ENAE 674 – Aerodynamics of Compressible Fluids Spring 2014

Instructor: Christopher Cadou

3179D Glenn L. Martin Hall (EGR)

301-405-0829 cadou@eng.umd.edu

Hours: Tuesday/Thursday 12:30-1:45 PM (Lecture)

Location: EGR3102

Texts: <u>Modern Compressible Flow with Historical Perspective</u>, Anderson

Elements of Gasdynamics, Liepmann and Roshko(LR Supplemental)Compressible-fluid Dynamics, Thompson(TH Supplemental)Introduction to Fluid Mechanics, Fox and McDonald(FM Supplemental)

Objective: Introduce students to the flow of inviscid, compressible fluids. Topics to be addressed

include one-dimensional flow of a perfect gas, shock waves, the effects of heat transfer and friction, shock tubes, nozzle design using the method of characteristics, and potential flow

solutions for two-dimensional situations.

Grading: 40% Homework

20% Midterm I 20% Final 20% Project

Homework: Will consist of problems from Anderson and supplemental problems posted on Canvas

(umd.instructure.com). Due dates will vary but you should expect approximately one homework assignment every 2 weeks. Homework will be collected and returned in class.

Exams: Will cover lecture material, problems from Anderson and the supplemental problems.

Project: To be determined.

Prereqs: Undergraduate courses in differential equations, thermodynamics, incompressible and

compressible flow (ENAE 311 and ENAE 414 or ENME 331 or ENME 640 or equivalent).

Policies: Late and illegible/messy homework will not be accepted.

Supplemental readings				
#	Author Title			
1	Rutherford Aris	Vectors, Tensors and the Basic Equations of Fluid Mechanics		
2	Ronald Panton	Incompressible Flow		

Topical outline:

- 1. Introduction
- 2. Review of key concepts
 - a. Vector theorems
 - b. Indicial notation
 - c. Conservation equations
 - i Reynolds transport theorem
 - ii Integral and Differential forms of mass, momentum, and energy conservation
 - iii Unsteady Bernoulli
 - d. Thermodynamics
 - e. Crocco's equation
- One-dimensional flow
 - a. Governing equations
 - b. Concept of 'total' conditions
 - c. Isentropic flow relations
 - d. Sonically referenced conditions
 - e. Normal shocks
 - f. Hugoniot relations
 - g. Fanno and Rayleigh lines
 - h. Flows with heat addition
 - i. Flows with friction
 - j. Detonations/Deflagrations
- 4. Oblique shock waves
 - a. Mach waves and the Mach angle
 - b. Property changes across oblique shocks
 - c. Graphical representations of oblique shock waves (shock polars and pressure-deflection diagrams)
 - d. Shock reflections and intersections
 - e. Intersecting shock waves
- 5. Expansion waves
 - a. Prandtl-Meyer expansion waves
 - b. Reflections from free boundaries
- 6. Simple supersonic flows over bodies
 - a. Airfoils and Shock-Expansion theory
 - b. Curved shocks
 - c. Detached shocks/3D effects
- 7. Quasi-one dimensional flow
 - a. Governing equations
 - b. Area-Mach number relation
 - c. Nozzles and diffusers
 - d. Wind tunnels
 - e. Inlet starting problem
 - f. Generalized One-Dimensional flow and 'Influence coefficients'
- 8. Unsteady wave motion
 - a. Property changes across a moving wave
 - b. Piston theory
 - c. Weak disturbances
 - d. Finite disturbances
 - e. Shock tubes

- f. Method of characteristics
- 9. Potential flow
 - a. Velocity potential equation
 - b. Linearized 2-D: Pressure coefficients for thin airfoils and slender bodies
 - c. Conical flow
 - d. Transonic flow
- 10. Viscous effects
 - a. Compressible Couette flow
 - b. Shock thickness and viscous effects
 - c. Compressible boundary layers
- 11. Experimental methods
 - a. Pitot probes
 - b. Total temperature probesc. Shadowgraph imaging

 - d. Schlieren imaging

NOTE: Topics 10 and 11 will be covered if there is time.

			ENAE 674 – Tentative Schedule		
Lec.	Date	Reading	Lecture topics	Supplemental	HW
		(Anderson)		reading and topics	(Anderson)
1	1/28	1.1-1.7	Introduction, review of vector identities,	LR: 1.1-1.12	
			indicial notation, thermodynamics	R1, R2, TH: 2.1-	
				2.7	
2	1/30	2.1-2.8	Review of conservation equations	LR: 2.1-2.3, R1,	
				FM: 4.2-4.7, 5.6,	
				5.7	
3	2/4	6.1-6.7	Review of conservation equations	LR: 2.4-2.6, R1	
4	2/6	3.1-3.5	Governing equations of 1-D flow	LR: 2.7-2.8	
5	2/11	3.6-3.7	Normal shocks and Hugoniot relations	LR: 2.13, TH: 7.1-7.4	
6	2/13	3.8-3.9	Flows with heat addition and friction	TH: 6.4	3.5, 3.8, 3.12
7	2/18	4.1-4.4	Oblique shocks	LR: 4.1-4.4.8, TH:	
				7.5-7.6	
8	2/20	4.5-4.6	Shock polar and reflected shocks from solid		4.4, 4.6, 4.9,
			boundaries		4.13
9	2/25	4.7-4.11	Pressure-deflection diagrams, intersecting		
			shock waves, and detached shock waves		
10	2/27	4.13-4.14	Prandtl-Meyer expansion waves	LR: 4.9-11, TH:	
				9.1-9.2, 10.1-10.2	
11	3/4		Reflections of expansion waves	LR: 4.12-4.13	
12	3/6	5.1-5.4	Quasi-one dimensional flow, Area-Mach	LR: 5.1-5.3	5.4, 5.9, 5.11,
			number relation. Possible Guest Lecturer		5.14, 5.15
13	3/11	5.5-5.10	Nozzles and diffusers	LR: 5.4-5.6	5.18, 5.19
14	3/13		Midterm I		
	3/18		Spring Break		
	3/20		Spring Break		
15	3/25		Influence coefficients		
16	3/27	7.1-7.6	Unsteady wave motion	LR: 3.1-3.7	7.1-7.4
17	3/29	7.7-7.10	Shock tubes	LR: 3.8-3.12	7.5, 7.7, 7.8,.7.10, 7.11
18	4/1	11.1-11.4	Method of characteristics	LR: 12.1-12.5, TH:	
				9.3-9.5	
19	4/3	11.5-11.7	Method of characteristics	LR: 12.8-12.12	
20	4/8	8.1-8.3	Compressible potential flow		
21	4/10	9.1-9.7	Linearized 2-D: Thin airfoils and slender bodies	LR: 10.1-10.7	
22	4/15	10.1-10.3	Transonic flow, conical flow	LR: 11.1-11.5, TH: 10.3	
23	4/17		Compressible Couette flow	LR: 13.1-13.4	
24	4/22		Compressible laminar boundary layer	LR: 13.5-13.13.10	
25	4/24		Normal shocks with viscosity	LR: 13.12-13.13, TH: 8.11	
26	4/29		Compressible turbulent boundary layer	LR: 13.14-13.16	
27	5/1		Project presentations		
28	5/6		Project presentations		
29	5/8		Project presentations		
30	5/13		Project presentations		
	5/20		Final exam 1:30PM -3:30 PM		