ENAE683 – High-Temperature Gas Dynamics

Description:	 This course deals with flows in which the local temperature becomes sufficiently high that the perfect-gas approximation no longer holds. Topics to be covered include: Introductory kinetic theory, chemical thermodynamics and statistical mechanics The ideal dissociating gas (IDG): equilibrium and nonequilibrium Vibrational nonequilibrium Normal and oblique shocks, expansions Propagation of sound waves Nozzle flows Curved shocks/blunt-body flows Viscous flows/chemically reacting boundary layers Radiative gas dynamics Facilities for simulating high-temperature flows
Instructor:	Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422
Class Schedule:	Tuesdays and Thursdays, 12:30 – 1:45, EGR 3102
Office hours:	Wednesdays, 1pm or by appointment
Prerequisites:	Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)
Coursework:	Coursework will consist of biweekly homework assignments (~65% of grade) and one final project/exam (35%)
Textbooks:	None required. The following may be helpful:
 J. Ander conver aspects W. G. V classic J. F. Cla W. H. D theory 	rson, Hypersonic and High-Temperature Gas Dynamics: modern text, rsational in style; covers numerical techniques but not all the theoretical s we will be considering (e.g., IDG). Vincenti & C. H. Kruger, Introduction to Physical Gas Dynamics: text on subject, doesn't cover modern numerical techniques arke & M. McChesney, The Dynamics of Real Gases Dorrance, Viscous Hypersonic Flow: covers reacting boundary-layer