ENAE682 – Hypersonic Aerodynamics

 Hypersonic similitude and Mach number independence Power-law similarity solutions and the blast-wave analogy Newtonian flow Surface inclination methods and method of characteristics Shock-wave reflections and interactions Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methods Instructor: Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422 Class Schedule: Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110 Office hours: Wednesdays, 3pm or by appointment Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) 	Description:	This course deals with gas-dynamical phenomena encountered as the Mach number of the flow becomes high (> 5 or so). Topics covered may include:
Power-law similarity solutions and the blast-wave analogy Newtonian flow Surface inclination methods and method of characteristics Shock-wave reflections and interactions Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methodsInstructor:Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		General flow relations in the high Mach number limit
Newtonian flow Surface inclination methods and method of characteristics Shock-wave reflections and interactions Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methods Instructor: Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422 Class Schedule: Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110 Office hours: Wednesdays, 3pm or by appointment Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: 1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		••
Surface inclination methods and method of characteristics Shock-wave reflections and interactions Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methodsInstructor:Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		
Shock-wave reflections and interactions Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methodsInstructor:Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		
Hypersonic boundary layers and transition Viscous interactions Hypersonic facilities and experimental methodsInstructor:Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		
 Viscous interactions Hypersonic facilities and experimental methods Instructor: Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422 Class Schedule: Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110 Office hours: Wednesdays, 3pm or by appointment Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: 1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 		
Hypersonic facilities and experimental methodsInstructor:Dr. Stuart Laurence, Glenn L. Martin Hall 3184 stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		
stuartl@umd.edu, Office: 301 405 2422Class Schedule:Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110Office hours:Wednesdays, 3pm or by appointmentPrerequisites:Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent)Coursework:Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%)Textbooks:None required. The following may be helpful:1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text 		
 Class Schedule: Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110 Office hours: Wednesdays, 3pm or by appointment Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: 1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Instructor:	Dr. Stuart Laurence, Glenn L. Martin Hall 3184
 Office hours: Wednesdays, 3pm or by appointment Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 		
 Prerequisites: Graduate or advanced undergraduate course in compressible flow (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Class Schedule:	Tuesdays and Thursdays, 12:30 – 1:45, EGR 1110
 (ENAE674 or equivalent) Coursework: Coursework will consist of biweekly homework assignments (~65% of grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Office hours:	Wednesdays, 3pm or by appointment
 grade) and one final exam/project (35%) Textbooks: None required. The following may be helpful: 1. J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Prerequisites:	č 1
 J. Anderson, Hypersonic and High-Temperature Gas Dynamics (AIAA Education) – covers most material of interest; conversational in style W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Coursework:	
 Education) – covers most material of interest; conversational in style 2. W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 	Textbooks:	None required. The following may be helpful:
 W.D. Hayes & R.F. Probstein, Hypersonic Inviscid Flow – advanced-level text with rigorous treatment R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good 		
with rigorous treatment 3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good	•	
3. R. N. Crabtree & L. F. Cox, Elements of Hypersonic Aerodynamics – good		
	•	

4. G.G. Chernyi (trans. R.F. Probstein), Introduction to Hypersonic Flow – deals with a limit range of topics, but covers them well