ABET Course Syllabus

ENAE 464 Aerospace Engineering Laboratory (sections 0201, 0202)

Credits & Contact Hours: 3 credits (2 hours of lecture and 3 hours of lab)

Course Status:	Required
Schedule:	Offered every Spring semester
Course Description:	Application of fundamental measuring techniques to measurements in aerospace engineering. Includes experiments in aerodynamics, structures, propulsion, flight dynamics and astrodynamics. Correlation of theory with experimental results.
Pre-Requisites:	ENAE 311, ENAE 324, ENAE 362 and ENAE 432
Co-Requisites:	None
Textbooks:	None
Other Required Material:	Course lecture notes and handouts
Course Oversight:	Design/Lab Committee
Syllabus Prepared By/Date:	Dr. Kenneth Yu on June 21, 2011

Course Objectives/Student Learning Outcomes:

- 1. Perform an data error analysis
- 2. Perform uncertainty propagation analysis
- 3. Perform statistical analysis
- 4. Have an understanding of probability distributions
- 5. Understand flow property measurements
- 6. Possess the ability to setup, perform, and analyze an aerospace related experiment involving measurements, data, collection, technical report writing

Topics Covered:

- 1. Aerodynamics
 - Incompressible Flow Experiment
 - Compressible Flow Experiment
 - Viscous Flow Experiment
 - Wind Tunnel Testing
- 2. CFD
 - Application of Computational Fluid Dynamic
- 3. Flight Dynamics & Control
 - System Identification Experiment
- 4. Diagnostics & Measurements
 - Application of Particle Imaging Velocimetry
- 5. Propulsion
 - Reacting Flow Experiment
- 6. Space Systems
 - Ion Energy Measurements
 - Human Factors Testing

- 7. Other Topics Planned During Lectures and Labs
 - Error Analysis, Uncertainty Propagation
 - Statistical Analysis, Probability Distributions
 - Flow Property Measurements: pressure, temperature, and velocity
 - Flow Visualization Techniques: density variation, species concentration
 - Laser-Based Diagnostics

Relationship of Course Objectives to Program Outcomes

This course addresses program outcomes: 3, 6, 7, 9, 10