ABET Course Syllabus

ENAE 441 Space Navigation & Guidance

Credits & Contact Hours:	3 credits (3 hours of lecture)
Course Status:	Required
Schedule:	Offered every Fall semester
Course Description:	Principles of navigation. Celestial, radio, and inertial navigation schemes. Navigational and guidance requirements for orbital, planetary, and atmospheric entry missions. Fundamentals of communications and information theory. Link budgets, antennas and telemetry systems.
Pre-Requisites:	ENAE 404, ENAE 432
Co-Requisites:	None
Textbooks:	 H. Curtis. Orbital Mechanics: Engineering for Students. Butterworth- Heinemann, 2005. O. Montenbruck and E. Gill. Satellite Orbits: Models, Methods and Applications. Springer, 2005 (recommended).
Other Required Material:	Course lecture notes and handouts
Course Oversight:	Dynamics and Control Committee
Syllabus Prepared By/Date:	Dr. Liam Healy on June 2011

Course Objectives/Student Learning Outcomes:

- 1. Understand observation techniques and limitations, and how navigation data is collected and assimilated
- 2. Compute initial orbits based on observation data
- 3. Improve orbit estimates using least squares estimation
- 4. Understand basics of advanced techniques such as Kalman filters
- 5. Understand sources of errors, how errors are treated, and their effect on navigation solutions
- 6. Compute GPS position solutions

Topics Covered:

- 1. Introduction to guidance and navigation
- 2. Sensors and observations
- 3. Algorithms
 - a. Initial orbit determination
 - b. Advanced orbital maneuvering
 - c. Interplanetary maneuvers
 - d. Linear orbit estimation
 - e. Nonlinear orbit estimation
 - f. Kalman filters
 - g. Atmospheric entry
- 4. Navigation networks and applications

ABET Course Syllabus

- a. Space Surveillance Network, Deep Space Network
- b. Global positioning system
- c. Debris and the built space environment
- d. TDRSS
- e. Geostationary satellite stationkeeping
- f. Proximity navigation and docking

Relationship of Course Objectives to Program Outcomes

This course addresses program outcomes: 1, 3, 4, 5, 7, 9, 12, 14