ABET Course Syllabus

ENAE 432 Control of Aerospace Systems

Credits & Contact Hours:	3 credits (3 hours of lecture)
Course Status:	Required
Schedule:	Offered every Spring semester
Course Description:	An introduction to the feedback control of dynamic systems. Laplace transforms and transfer function techniques; frequency response and Bode diagrams. Stability analysis via root locus and Nyquist techniques. Performance specifications in time and frequency domains, and design of compensation strategies to meet performance goals.
Pre-Requisites:	ENAE283 and ENAE301
Co-Requisites:	None
Textbooks:	(1) N. Nise. Control systems engineering. Wiley, sixth edition, 2010 (recommended)
Other Required Material:	Course lecture notes and handouts
Course Oversight:	Dynamics and Control Committee
Syllabus Prepared By/Date: Dr. Robert Sanner in January, 2011	

Course Objectives/Student Learning Outcomes:

- 1. Predict the response of a linear system to an arbitrary input
- 2. Understand the concept and significance of the modes of a system and their relation to the nature and duration of the transient response
- 3. Determine the shape of the Bode diagrams of a system from its transfer function, and conversely, be able to determine the transfer function from the Bode diagrams
- 4. Determine the stability and performance characteristics of a feedback system, and how these properties change as a function of the loop gain
- 5. Design a feedback control loop and compensator for a given dynamic system, so that the overall system meets specified transient and steady-state performance targets, as well as robust stability requirements
- 6. Confidently use Matlab to carry out the calculations required for 1)-5) above, and to assemble graphical documentation for these analyses
- 7. Understand in a broad sense the nature and goals of feedback control; its advantages and dangers; and its costs, both in dollars and in increased hardware/software complexity

Topics Covered:

1. Unit I: Linear System Response

ABET Course Syllabus

- a. Introduction
- b. Laplace transforms and transfer functions (Chap 2)
- c. Transient and steady-state responses; stability (Chap 4)
- d. Second order transient responses (Chap 4)
- e. General transient responses: poles and zeros (Chap 4)
- f. Sinusoidal response (Chap 10)
- g. Bode and polar diagrams (Chap 10)
- 2. Unit II: Feedback Analysis and Synthesis
 - a. Feedback systems: closed loop dynamics (Chap 5)
 - b. Tracking performance; system type (Chap 7)
 - c. Closed-loop stability via root locus analysis (Chap 8)
 - d. Closed-loop stability via Nyquist analysis (Chap 10)
 - e. Relative stability: phase and gain margins (Chap 10)
 - f. Compensation design: P, P-D, P-I-D (Chap 9)
 - g. Compensation design: lead and lag (Chap 9, 11)
 - h. Model uncertainty and robustness

Relationship of Course Objectives to Program Outcomes

This course addresses program outcomes: 1, 3, 4, 5, 7, 8, 9, 14, 16