ABET Course Syllabus

ENAE 420 Computational Structural Mechanics

Credits & Contact Hours:	3 credits (3 hours of lecture)
Course Status:	Not required
Schedule:	Offered every Spring semester
Course Description:	Introductory of finite element methods for aerospace engineering modeling and analysis; equips students with ability to understand manuals of commercial finite element analysis software.
Pre-Requisites:	ENES220, MATH241, Linear Algebra.
Co-Requisites:	None
Textbooks:	None
Other Required Material:	Course lecture notes and handouts
Course Oversight:	Structures and Vibration Committee
Syllabus Prepared By/Date:	Dr. Lee on June, 2011

Course Objectives/Student Learning Outcomes:

- 1. Thorough understanding of the fundamentals of the finite element method
- 2. Introduction of a commercial finite element analysis software package (Solidworks)
- 3. Ability to read and understand the manuals of any commercial finite element software

Topics Covered:

- 1. Introduction to FE Modeling:
 - a. Axially loaded slender body,
 - b. Virtual work,
 - c. Construction of element stiffness matrix and load vector,
 - d. Assembly of global stiffness matrix and global load vector,
 - e. Determination of displacement and stress
- 2. Truss Structures: Truss structures in 3D space
- 3. Beam Bending: Construction of the 4-DOF element
- 4. Temperature Effect: Load vector due to temperature change
- 5. Structural Dynamics:
 - a. Consistent mass matrix,
 - b. Modal analysis,
 - c. Numerical integration,
- 6. Stability: Static stability and dynamic stability

Relationship of Course Objectives to Program Outcomes

This course addresses program outcomes: