ABET Course Syllabus

ENAE 324 Aerospace Structures

Credits & Contact Hours:	3 credits (3 hours of lecture)
Course Status:	Required
Schedule:	Offered every Spring semester
Course Description:	Analysis of torsion, beam bending, plate bending, buckling and their application to aerospace.
Pre-Requisites:	ENES 220
Co-Requisites:	None
Textbooks:	Course notes
Other Required Material:	Course lecture notes and handouts
Course Oversight:	Structures and Vibration Committee
Syllabus Prepared By/Date:	Dr. Mary Bowden, June 6 2011

Course Objectives/Student Learning Outcomes:

- 1. Sizing under strength and stiffness constraints
- 2. Torsion, bending and buckling of thin-walled structures
- 3. Concept of damage tolerant design
- 4. Concept of finite element modeling

Topics Covered:

- 1. Basic structural elements
- 2. Internal loads
- 3. Intertia loads
- 4. Shear center & wing box sizing
- 5. Torsion of thin-walled structures
- 6. Bending of thin-wall structures
- 7. Direct shear of thin-wall structures
- 8. Torque equivalence & finding shear center
- 9. Shear flow
- 10. Stringers & shear panels
- 11. Temperature effects
- 12. Column & panel buckling
- 13. Finite element modeling
- 14. Structural integrity

Relationship of Course Objectives to Program Outcomes

This course addresses program outcomes: 1, 3, 5, 8, 9