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ABSTRACT Metareasoning refers to reasoning about one’s own decision making process. This paper
considers metareasoning about the decision making process in multi-agent settings. We present a multi-
agent metareasoning approach that enables a multi-agent team to select which task allocation algorithm
to use as a function of changing communication quality level. Given a set of multi-agent task allocation
algorithms, we synthesize a policy that prescribes the best algorithm to use among a predefined set of
algorithms for a given communication level. Since each agent in the team runs the same policy, the team (or a
part of the team) will collectively switch between task allocation algorithms as a function of the observed
level of communication. We apply reactive synthesis to generate the policy from high-level specifications
written in Linear Temporal Logic encoding the agents’ switching behavior with respect to the state of
the environment. We perform experiments in simulation to identify the best performing algorithms under
different communication levels. The communication environment is modeled using the Rayleigh fading
model and communication estimation is done through the exchange of heartbeat messages among agents.
We test our metareasoning policy in three types of scenarios: search & rescue, fire monitoring, and ship
protection scenarios. For each scenario, we demonstrate that our policy achieved better performance with
respect to either max distance traveled, max number of transmitted messages or both compared to running
any single algorithm.

INDEX TERMS Distributed robot systems, decentralized task allocation, meta-level control.

I. INTRODUCTION
Many of the benefits of Multi-Agent Systems (MAS) come
from their ability to solve tasks more efficiently through
collaboration. Some of the key challenges in MAS, such
as the coordination of agents’ behavior and distributed task
allocation, require communication between agents. However,
communication is unreliable in realistic environments and
outside the control of the multi-robot team, making the
coordination of tasks more challenging. Otte et al. [1]
and Nayak et al. [2] have shown that different distributed task
allocation algorithms perform better, relative to each other,
at different communication quality levels.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rashid Mehmood .

To attain robustness to changes in communication, a naive
strategy is to have each robot in the team use the best per-
forming algorithm for the perceived level of communica-
tion. However, this may cause composability problems. For
example, if communication quality varies over the environ-
ment, then different team members may select incompatible
task allocation algorithms. If communication levels change
over time, then switching between different task allocations
algorithms may introduce additional overhead, create inef-
ficiencies, or require restarting the task allocation process
entirely. This raises questions on whether there are benefits
to be gained from switching between different task allocation
algorithms and what those benefits are.

The main motivation of this paper is to present a metar-
easoning framework that addresses these composability
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FIGURE 1. A sample switching prescribed by the metareasoning policy for
high and low communication levels. On the left, agents a1,a2 and a3
perceive high communication availability at time t0 and execute ACBBA
as their task allocation scheme. On the right, agents switch to performing
PI at time t1 as a result of perceiving low communication availability.

challenges and provides insights on these questions.
Metareasoning describes reasoning about one’s own decision
making process.Multi-agent Metareasoning describes a pro-
cess whereby a team of agents collectively reasons about the
team’s decision making process.

We propose a metareasoning approach that observes the
communication quality in the environment and the state of
each agent, individually, to enable a distributed team of agents
to collectively switch between different task allocation algo-
rithms without the need for synchronization. We synthesize
a distributed multi-agent metareasoning policy (Fig. 1) from
specifications written in Linear Temporal Logic (LTL). The
synthesis is performed offline a priori, and the resulting
policy is executed continually by each agent in real-time,
adapting the team’s distributed task assignment scheme in
response to perceived changes in communication availability.

The novelty of our work is a meta-level controller that runs
in parallel across the team, to improve system performance
under changing communication conditions, when solving the
problem of decentralized task allocation. Although meta-
level control for the purpose of coordinating agents’ behavior
has appeared in [8], [9] and [13], our work is fundamentally
different because we consider reasoning about a set of exist-
ing task allocation methods in order to make the system more
robust to varying communication. This additional reasoning
can lead to improved task allocation assignments even when
communication between the agents deteriorates.

Our contributions are as follows:
1) We propose a metareasoning policy that enforces the

team’s prescribed behavior for task allocation as a func-
tion of the observed communication quality. In con-
trast to other metareasoning approaches which try to
dynamically assess the benefit of additional reasoning
at the cost of computational complexity, our policy is
trained completely offline and synthesized from rule-
based reasoning (LTL), limiting the computational effort
required for online execution of the policy.

2) We demonstrate that the proposed multi-agent metar-
easoning approach achieves enhanced performance
(i.e. lower communication and travel costs) when

solving the problem of decentralized task allocation
compared to running a single task allocation algorithm
via an implementation.

3) We validate the proposed approach via a large number
of experiments across multiple types of scenarios.

In this paper, the multi-agent metareasoning policy is built
from a set of decentralized task allocation methods for which
performance profiles under varying levels of communica-
tion were obtained in [2]. This set includes: the Consensus
Based Auction Algorithm (CBAA) [14], the Asynchronous
Consensus Based Bundle Algorithm (ACBBA) [15], [16],
the Decentralized Hungarian Based Algorithm (DHBA) [17],
the Hybrid Information and Plan Consensus (HIPC)
algorithm [18], [19] and the Performance Impact (PI)
algorithm [20]. To test the proposed metareasoning policy,
we consider scenarios involving modern day operations such
as surveillance, target classification and detection, search and
rescue and ship protection operations, of particular interest
to defense applications. Instantaneous communication con-
ditions are modeled using a Rayleigh Fading model [21].
Changes in signal attenuation (i.e., communication quality)
over time are modeled by varying the path loss exponent
parameter. We adopt the Rayleigh fading model to simulate
imperfect communication environments as it comes closer to
modeling realistic environments compared to other models
such as the Bernoulli or Gilbert-Elliot model models [2].

In addition, communication changes are triggered to hap-
pen at every channel in the environment. In each sce-
nario, high or low communication are simulated for some
period after which, the communication level is switched to
low or high, respectively. We consider a fullmesh communi-
cation topology, a fully connected network, in which every
agent attempts to communicate with every other agent and
then messages are dropped according to the communication
model. This assumption facilitates the discovery of perfor-
mance differences due to applying the proposed policy as
opposed to changing the agents’ network topology [5]–[7].
For communication estimation, we propose a straightfor-
ward method in which each agent computes an estimate
per communication link over which heartbeat messages are
expected to arrive from every other agent in the environ-
ment. This method is well suited to provide link quality
estimates for any underlying communication model. Other
sources have explored probabilistic estimation methods of
link quality with respect to channel power at different loca-
tions [3], but such estimation is beyond the scope of this
paper.

This paper is organized as follows: Section II presents
preliminaries including a description of each of the task allo-
cation algorithms considered and communication model. The
problem formulation is presented in Section III and themetar-
easoning framework is presented in Section IV. Section V
describes each type of scenario implemented. Section VI
describes the experimental setup and results are presented in
Section VII. Finally, related work is discussed in Section VIII
and conclusions appear in Section IX.
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II. PRELIMINARIES
This section presents the metareasoning concepts, task allo-
cation algorithms and communication model.

A. METAREASONING
Alexander et al. [40] developed a framework for metarea-
soning in MAS, in which agents consider and select their
local problem-solving actions while coordinating with all
other agents. In this framework, each agent solves a Markov
Decision Process (MDP), which generates a computation
policy that the agent uses to choose the best computation
based on the current state. The agent’s metareasoning pro-
cedure must alternate between its local decision making and
the coordinated decision making among the entire group to
account for various ‘‘what if’’ coordination scenarios.

In this work, we assume variable communication availabil-
ity over time, thus in contrast to [40], we opt for synthesizing a
distributed multi-agent metareasoning policy offline. We fol-
low the multi-layered agent model outlined in [40]. Within
this model, three types of actions are considered: meta-level
actions, object-level actions and ground-level actions, which
we will refer to as low-level actions (to avoid confusion with
the use of the term ‘‘ground-level’’ in UAV applications).
These actions are defined as follows:
1) Low-level actions: These actions are performed by the

agent to change its state in the environment. Examples of
such actions include movement, communication and
sensing.

2) Object-level actions: These actions correspond to com-
putational processes that output the low-level action to
be performed by the agent to achieve its goal.

3) Meta-level actions: These actions are used to analyze
and improve the performance of object-level actions.

In our framework, low-level actions include communi-
cation and point-to-point navigation, performed by each
agent to complete its task sequence assignment. Object-level
actions correspond to computing task sequence assignments
using a specific task allocation method and performing com-
munication estimation. At the meta-level layer, each agent
executes a switching protocol. This protocol specifies the
appropriate task allocation method (object-level action) for
the perceived level of communication. Our research goal is
to determine whether adding the proposed meta-level control
layer improves performance in environments with varying
communication levels.

B. TASK ALLOCATION ALGORITHMS
This section describes the algorithms considered for the coor-
dination of task sequence assignments. For a detailed expla-
nation of these algorithms, see their respective references.

CBAA is as an auction-based approach in which each agent
obtains a single-task assignment [14]. This algorithm consists
of two phases: the assignment phase and the consensus phase.
In the assignment phase, each agent computes its local bids
for all incomplete tasks and assigns itself the task with the
lowest bid. The agent updates its winning bids list and sends

it to all other agents. During the consensus phase, each agent
updates its bids list with the lowest bids received and each
task is assigned to the agent with the lowest bid.
ACBBA is a multi-task assignment algorithm [15], built

as an extension of CBBA [41] for agents communicating
asynchronously. This method operates in two phases: the
assignment phase and the consensus phase. In the assignment
phase, each agent gets assigned a bundle of tasks. Once bun-
dles are built, agents update and share their winning bids lists
along with the winning time stamps. In the consensus phase,
agents resolve any conflicts found on their task assignments
and update their internal lists.
The PI approach is presented in [20]. Similar to CBBA, PI

assigns multiple tasks to agents, however, it uses a different
kind of bid evaluation, known as significance. This evaluation
is used to assess the contribution of a task to the cost of
the current task sequence assignment. There are two phases
in this approach: a task inclusion phase and a consensus
and task removal phase. During the task inclusion phase,
the marginal significance of unassigned tasks is computed in
order to update the task bundle and significance lists. During
the consensus and task removal phase, each agent shares its
significance list with all other agents and does consensus
by removing tasks for which the agent has been outbid by
another agent. ACBBA consensus rules are used for this
phase since we consider an asynchronous system.

DHBA is a task allocation algorithm that assigns a single
task to each agent based on a cost matrix [17]. This matrix
keeps track of the cost of each task for each agent. There are
two phases in this algorithm: the assignment phase and the
update phase. In the assignment phase, the Hungarian algo-
rithm [42] is run on the cost matrix to obtain the optimal task
assignment. In the update phase, agents broadcast the cost
matrix and update it according to the information exchanged.

HIPC is a multi-task assignment algorithm [20], built as
an extension of CBBA. However, instead of generating task
bundles in a greedy fashion, HIPC tries to solve the task
assignment problem for all agents at once. This algorithm has
two phases: task allocation phase and consensus phase. The
task allocation phase consists of each agent running a full
Task Allocation Algorithm (TAA) to generate its task bundle.
We run a variation of the nearest neighbors algorithm [12]
using the min-max objective in the TAA implementation.
In the consensus phase, agents resolve any conflicts on task
assignments using ACBBA consensus rules.

For all bundle algorithms, the current task sequence is
reset for each agent whenever a new target is dynamically
added or removed from the workspace.

The next section describes the communication model used
in our implementation.

C. RAYLEIGH FADING MODEL
Environmental clutter, e.g., buildings, trees, etc., tends to
scatter radio signals and degrade communication quality. The
propagated signals experience different shifts in amplitude,
frequency and phase. The Rayleigh fading model predicts
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FIGURE 2. Received power of a signal attenuated by rayleigh fading and
path loss is shown for three different values of the path loss exponent γ .
The transmitted power PT = 30 dB and the sensitivity threshold
PS = −60 dB. Asterisks ‘∗’ represent dropped packets. The number of
dropped packets increases as the value of the path loss exponent
increases.

the attenuation of the received signal by assuming that the
signal’s amplitude will vary according to a Rayleigh distri-
bution [21]. This model has been widely used to simulate
wireless communication in cases where it is desirable to
account for both distance-based path loss effects as well as
the random nature of dropped packets [21], [25] [26].We note
that alternative models exist that account for only random
packet loss but not distance effects (Bernoulli model [1] and
the Gilbert Elliot model [22], [23]) or only distance effects
but not random path loss such as communication disk mod-
els [17]. Indeed, the Rayleigh fading model is widely used
as model for wireless signal degradation; it is the special
case of a Rician fading model [24] in which there exist
sufficiently many signal propagation paths that the signal
impulse response can be approximated as a Gaussian process.
To quantify the fading effects, a Rayleigh random variate
sequence is obtained efficiently using the Inverse Discrete
Fourier Transform technique (IDFT) [44], [45]. We sample
from the generated sequence, convert the sampled power
value to decibel and calculate the attenuation due to fad-
ing PF . In our implementation, in addition to fading effects,
we also account for signal attenuation due to path losses.
Eq. (1) is used to compute path losses PPL as follows,

PPL = PL0 + 10γ log10

(
d
d0

)
, (1)

where d is the current distance between the transmitter and
receiver, γ is the path loss exponent and PL0 is the path
loss at reference distance d0. The total attenuation is given
by PL = PF + PPL . The total received power is given by
PR = PT −PL , where PT is the transmitted power. We define
PS as the user-specified sensitivity threshold. A message is
dropped if the condition PR < PS is satisfied as shown in
Fig. 2 for three different communication scenarios. In each
scenario, we show different amounts of dropped messages by
setting γ = 2.5 (high communication), γ = 3.5 (medium
communication) and γ = 4.5 (low communication).

III. PROBLEM FORMULATION
In this section, we present the metareasoning problem solved
at the meta-level layer and the task allocation problem solved
at the object-level layer.

A. METAREASONING PROBLEM
Consider a team of n agents A = {a1, . . . , an} and the
multi-agent task allocation problem, denoted as P , that A
needs to solve. Agents can choose from a set of l multi-agent
task allocation algorithms, A = {A1, . . . ,Al}, to solve P .
For instance, we can set P = search&rescue and A1 =
CBAA. Let E denote the space of environmental features such
as communication level and target density. Environmental
features are allowed to change as functions of time. Thus,
a realization of environmental features is denoted as e(t) ∈ E .
Though we do not have direct access to the true value of e(t)
at any instant of time t , we can obtain an estimate of e(t),
denoted as ẽ(t). Consider ẽi;[0:ki] = {ẽi;0, ẽi;1, . . . , ẽi;ki} to
be the sequence of the first ki + 1 estimates computed from
agent ai. Let En be the space of all possible sequences of
estimates from a team of size n. Let M be the multi-agent
metareasoning approach.
Definition 1 (Instantaneous Multi-Agent Metareasoning

Problem): Given P and a sequence of observations from
all n agents, {ẽ1;[0:k1], . . . , ẽn;[0:kn]} ∈ En, where ki + 1
represents the number of observations obtained by the i-th
agent, the instantaneous multi-agent metareasoning problem
is to calculate the tuples (Ai,Ti) = M ({ẽ1;[0:k1], . . . , ẽn;[0:kn]})
composed by the multi-agent algorithm Ai ∈ A as well as the
subteam Ti ⊆ A that will use algorithm Ai so that the team
A =

⋃̇L
i=1Ti, where L is the number of tuples generated,

communally solves P . Note that the subteams are disjoint
sets of A since agents cannot belong to multiple subteams
simultaneously.
Definition 2 (General Multi-Agent Metareasoning Prob-

lem): For time steps 1, . . . , t , repeatedly solve the Instanta-
neous Multi-Agent Metareasoning Problem, and then have
agents in each subteam Ti use, respectively, multi-agent algo-
rithm Ai to solve P .

B. DECENTRALIZED TASK ALLOCATION PROBLEM
The problem of decentralized task allocation can be formu-
lated as a binary integer programming problem, similar to the
multiple Traveling Salesman Problem (mTSP) [15]. Given a
set ofm tasks and a set of n agents, a solution is obtained such
that each agent is assigned a sequence of tasks and every task
in the sequence is completed by the agent. Consider a set ofm
tasks T . Let Si ⊆ T be a sequence of tasks assigned to agent
ai and pi be the number of tasks in Si. Let q(Si) be the cost
of sequence Si. The goal of the decentralized task allocation
problem is to obtain a sequence Si for each agent ai ∈ A such
that these sequences are disjoint and T =

⋃n
i=1 Si.

The next section describes the metareasoning framework
in which the metareasoning and the task allocation problems
are solved.

VOLUME 9, 2021 98715



E. Carrillo et al.: Communication-Aware Multi-Agent Metareasoning for Decentralized Task Allocation

FIGURE 3. Control flow within the metareasoning framework proposed.
Each agent has a meta-level control layer, a task-planning layer and a
low-level layer. Agents compute a communication estimate from the
messages received at the low-level layer. Using this estimate,
the meta-level control layer outputs the algorithm choice for the agent.

IV. METAREASONING FRAMEWORK
Our metareasoning framework defines three control layers
(shown in Fig. 3) in every agent:

(i) Meta-level layer: This layer decides on the decen-
tralized task allocation algorithm the agent should
perform (meta-level action).

(ii) Task-planning layer: This layer decides on the task
sequence assignment (object-level action).

(iii) Low-level layer: This layer generates the trajectories
along which the agent needs to move to reach each
task location.

Each agent’s decision cycle consists of:
(a) Estimating the communication level in the environment

at the task-planning layer from heart-beat messages
received at the low-level layer.

(b) Executing meta-level control to output the appropri-
ate algorithm for the perceived communication level
according to the metareasoning policy.

(c) Performing the chosen algorithm to obtain a task
sequence assignment.

The novelty of our approach lies in the policy placed at the
meta-level control layer. This layer consists of a switching
protocol as defined by a fixed, commonmetareasoning policy
computed offline. This ensures that agents perform the same
algorithm for a given level of communication without the
need to communicate or synchronize their decisions during
runtime. Since agents compute communication quality esti-
mates locally and run an independent copy of the policy,
different agents may have different beliefs about the commu-
nication quality at any instant of time and therefore may use
different algorithms simultaneously.

In our implementation, we frame the synthesis of the
metareasoning policy as a reactive synthesis problem, which
can be solved by digital design synthesis tools [46].

TABLE 1. LTL notation.

The synthesis problem can be viewed as a two-player game
between an environment that attempts to falsify the specifi-
cation and the system that tries to satisfy it. Thus, we synthe-
size the metareasoning policy as the solution to the reactive
synthesis problem involving the communication level in the
environment and the agent’s algorithm choice. We note that
simpler methods can be used to implement the policy such
as a fuzzy logic controller or adhoc heuristics, however,
the formal frameworkwill enable us to easily encode different
types of high-level specifications involving behaviors such as
sequencing, conditions and avoidance, in future work.

In this work, specifications involve temporal logic, which
is an extension of Boolean logic with temporal semantics.
The building blocks of LTL formulas consist of Boolean vari-
ables, logical connectives and temporal modal operators. The
logical connectives include: negation (¬), disjunction ( ∨ ),
conjunction ( ∧ ) and material implication (−→). The tem-
poral modal operators include next (©), always (�), even-
tually (♦) and until ( U ). For a more detailed discussion of
LTL, see the preliminaries section of [46]. One of the most
commonly used forms for these LTL formulas is the General
Reactivity(1) (GR(1)) assume-guarantee form [46], shown
in Eqs. (2)-(4),

ϕe → ϕs, (2)

ϕe = ϕei ∧ ϕet ∧ ϕeg, (3)

ϕs = ϕsi ∧ ϕst ∧ ϕsg, (4)

where ϕe characterizes the assumptions on the environment
and ϕs characterizes the system requirements, ϕei , ϕ

s
i are the

initial values for the environment and system variables, ϕet ,
ϕst represent the evolution of the state of the environment
and system, and ϕeg, ϕ

s
g represent goal assumptions for the

environment and desired goal specifications for the system.
The LTL specifications in GR(1) form are used to solve

the synthesis problem in polynomial time [46]. For these
specifications, the synthesizer in the temporal logic planning
(TuLiP) toolbox [43] can derive a finite state machine in
which states are valuations of environment and system vari-
ables and transitions correspond to actions that the system can
take to reach a desired state. We summarize the main LTL
notation used in this Section in Table 1.

The following sections define the assumptions on the envi-
ronment and the system requirements.

A. ENVIRONMENT
Each agent sends a fixed number of heartbeat messages peri-
odically for the purpose of communication estimation. These
heartbeat messages do not contain any meaningful informa-
tion, but their absence can signal loss of communication
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between a sender and a receiver. Each agent ai estimates the
per link communication with agent aj by computing the ratio
of the number of heartbeat messages received per link hij and
the expected number of heartbeat messages h. At each time
step, agent ai can determine its communication estimate cei
by computing the max ratio over all its communication links,

cei = max
ai 6=aj,aj∈A

(
hij
h
). (5)

Eq. (5) captures the overall communication change in
the environment. For instance, as communication degrades,
the max ratio across all channels will decrease, assuming that
communication drops across all channels of communication.
Similarly, as communication improves, the max ratio will
capture the increase in communication availability. Thus,
we consider this estimation method to be suitable as changes
in communication are triggered across every communication
channel. Such communication changes can be encountered
in scenarios with changing weather conditions or a changing
presence of dynamic obstacles including adversarial agents
that seek to interfere with the communication among agents.

The communication estimate cei is then mapped to a dis-
crete communication level. Nayak et al. [2] showed that the
performance ranking of the task allocation algorithms tested
remains the same at high communication levels for the visit
and search & visit scenarios. It is only when communication
drops substantially that this ranking changes and remains
constant for lower levels of communication. For this reason,
we define only two discrete communication levels based on
the analysis presented in [2]: high (H) for ct < cei ≤ 1 and
low (L) for 0 ≤ cei ≤ ct . The threshold value ct is specified
experimentally by mapping the sensitivity threshold values
tested in [2] to either high or low communication based on
the sensitivity threshold value at which the change in ranking
of the algorithms was observed. Details on these experiments
are presented in Section VI-B.

In the synthesis problem, each of these discrete commu-
nication levels is represented by a Boolean variable. Thus,
the environment in our problem can be described by these
two variables as E = H ×L. This implies that the state of the
environment corresponds to a valuation of these two Boolean
variables. If the communication estimate cei is within the
range ct < cei ≤ 1, then H will be set to True and L will be
set to False. Otherwise, if 0 ≤ cei ≤ ct , H will be set to False
and L will be set to True. The environment specifications are
as follows:

ϕei = L ∧ ¬H , (6)

ϕet = �(¬(H ∧ L) ∧ (H ∨ L)), (7)

ϕeg = �♦H ∧ �♦L. (8)

Eq. (6) states that initially the environment is assumed to
have a low communication level. This assumption is valid if
we expect it will take a few milliseconds for all agents to start
up the exchange of messages. Though, any initial condition
can be chosen as long as it satisfies all other specifications.

Eq. (7) is required to verify that exactly one of the two
variables H and L is true at all times. This is specified to
ensure that the environment is in a single level of commu-
nication, ignoring cases in which communication is simul-
taneously high and low or simultaneously neither. Finally,
Eq. (8) states that always eventually: the communication level
of the environment will be high and that always eventually:
the communication level of the environment will be low. This
specification ensures that the communication in the environ-
ment will change at some future time.

B. SYSTEM
Let S = {Aj,Ak} × {True,False} represent the system states,
where {Aj,Ak} ⊂ A. An element s ∈ S represents the tuple
composed by the multi-agent task allocation algorithm used
by the agent and a Boolean variable, denoted as Reset . This
variable will be set to True if the agent’s current task sequence
assignment and bids need to be reset before executing task
allocation. If Reset is set to False, then the agent continuous
on using its current task sequence assignment and winning
bids information. The rationale for this is that as communica-
tion improves, agents are likely to obtain better solutions and
may benefit from discarding lower quality solutions obtained
under poor communication.

Let F ⊆ S × S be the set of all possible transitions
between the elements in the state space. When switching
happens, agents only need to transfer their current winning
bids, completed tasks and current task sequence assignment
into the execution of an iteration of the new algorithm. We
define the following system specifications:

ϕsi = Ak ∧ Reset, (9)

ϕst,1 = �((L ∧ ©H )→©(Aj ∧ Reset)), (10)

ϕst,2 = �((H ∧ ©L)→©(Ak ∧ ¬Reset)), (11)

ϕst,3 = �((L ∧ ©L)→©(Ak ∧ ¬Reset)), (12)

ϕst,4 = �((H ∧ ©H )→©(Aj ∧ ¬Reset)). (13)

Eq. (9) states that agents reset their task sequence assign-
ments and perform Ak initially. Eqs. (10)-(13) indicate which
algorithm the agent should perform and whether or not
the agent should reset its current task sequence assign-
ment next based on the current and next states of the
environment. Eq. (10) specifies that, when communication
improves, agents should reset their task sequence assign-
ments. Eqs. (11)-(13) specify that, when communication
degrades or remains the same, agents should not reset the bids
information.

For each scenario, the best performing algorithms are
identified for high and low communication levels, respec-
tively, via simulation experiments. We set Aj to the best
performing algorithm under high communication and Ak to
the best performing algorithm under low communication. For
the search & rescue scenario, we set Aj = ACBBA and
Ak = CBAA by leveraging the results from [2]. Further
experiments are performed to identify Aj and Ak for the fire
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monitoring and ship protection scenarios. These experiments
will be described in Appendix D.

C. ALTERNATIVE TEAM UP STRATEGY
If agents perceive the same communication quality level,
they will execute the same task allocation algorithm specified
for that level. However, when agents switch to performing
different algorithms simultaneously because of having dif-
ferent beliefs about the communication quality in the envi-
ronment, they may compute task assignments from outdated
information. This information may have been successfully
received at some point in time, but may no longer be valid
once the agents lose communication and change their task
allocation schemes. To address some potential conflicts from
changes in communication, we propose a team up strategy in
which agents fully coordinate only with agents from which
they perceive a high level of communication. In addition to
switching to the appropriate task allocation algorithm for a
given communication scenario, each agent applies this team
up strategy, in which, if the agent teams upwith another agent,
it will use all the bids information received from the agent
when executing task allocation. On the contrary, if the agent
perceives low communication from another agent, it will dis-
card all bids information received from this agent except for
information pertaining completed tasks. Fig. 4 shows agents
a0, a1 and a2 performing the team up strategy.

FIGURE 4. Sample execution of the synthesized switching protocol where
agents team up according to the level of communication perceived.
Agents a0 and a1 team up as they perform ACBBA, while a2 individually
performs CBAA.

The motivation for this strategy is to prevent agents from
relying on all the information received from agents with
which they experience poor communication. Consider an
agent a1 that receives messages about tasks that another agent
a2 intends to do and plans accordingly. However, if a2 decides
to perform different tasks and broadcasts messages about its
updated plan, these messages may not be received by a1. This
could lead to a1 and a2 leaving some tasks incomplete or tak-
ingmuch longer to complete all tasks. By having agents select
which information to include in their computations based
on communication availability, tasks can be completed even
when broadcasted messages are not received.

TABLE 2. Task allocation problem, task definition and objective function
type for each scenario type. Scenarios are ordered in increasing level of
difficulty.

The following section describes the decentralized task allo-
cation problem P considered for each scenario implemented
given a team of agents A.

V. DECENTRALIZED TASK ALLOCATION SCENARIOS
The scenarios considered for our experiments are summa-
rized in Table 2. and simulation runs for each type of scenario
are shown in Fig. 5.
We define T and q(Si) for each type of scenario as follows:

1) SEARCH & RESCUE SCENARIO
In this scenario, we define T , G ∪ U , where G =
{g1, . . . , gr } ⊂ W is a finite set of a priori known grid cells
and U = {u1, . . . , um} ⊂ W is a finite set of unknown
stationary targets located in a map, W ⊂ R2, of size N × N .
The cells in G divide the search space into regions of equal
size. Initially, agents begin searching the map by visiting each
cell in G. Each cell is said to be completely searched when an
agent reaches its center because, at this location, an agent’s
sensor radius Rd covers the entire cell, and the agent can
detect any targets in that cell.

As agents search the space, they are able to detect new
targets located within their sensor radius. Discovered targets
are added to the set of known tasks K, which is equal to G
at the start of the mission. Agents share information about
the newly discovered targets with other agents. Thus, Si is the
sequence of pi tasks (stationary targets and grid cells) in K
that are assigned to ai. A target is considered to be visited
when an agent moves within a threshold distance δT of the
target’s location. The mission is completed when every cell
is searched by at least one agent and every target is visited by
at least one agent.

Themin-max objectiveO(X ) considered in this scenario is
to find a task assignment X ∗ = {S1, . . . , Sn} such that

O(X ∗) = min
X

(
max
ai∈A

q(Si)
)
. (14)
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FIGURE 5. Possible runs of agents performing decentralized TA for each type of scenario considered in our problem formulation. Each
target has a unique ID, not shown in these figures to reduce clutter. In the ship protection scenario, lighter shades of green reflect that a
longer time has passed since cells were last searched.

The cost function q(Si) is defined as

q(Si) = Ci + ci(u1)+
pi−1∑
k=1

‖uk+1 − uk‖, (15)

where Ci is the cost accrued by ai up to its current location
and ci(uk ) corresponds to ai’s cost of visiting target uk . The
cost ci(uk ) is calculated as the Euclidean distance from the
agent ai to uk . Thus, the min-max objective is to minimize
the maximum distance traveled over all agents. Assuming a
constant speed for the agents, this is equivalent to minimizing
the mission completion time.

2) FIRE MONITORING
We define T , G ∪ U as in the search & rescue scenario
with the difference that stationary targets in this scenario
correspond to fire locations which are dynamically generated
and added to the map during the mission. Fire locations are
propagated according to the wavelet differential equations
and the Rothermel spread equation provided in Farsite [32],
a fire simulation engine. At each simulation step, fire grows
continuously for a time interval 1t , after which new fire
locations are discretized into fire regions. Each fire region
obtained is considered as an stationary target. Fire locations
are propagated until a max number of targets is reached.
Discovered fire targets are added to the set of known tasks
K, which is equal to G initially. Agents share locations of the
newly discovered fire targets with other agents. Thus, Si is the
sequence of pi tasks (fire targets and grid cells) in K that are
assigned to ai. The mission is completed when every cell has
been searched by at least one agent and every fire target has
been visited by at least one agent.

Themin-max objectiveO(X ) and cost function q(Si) in this
scenario are defined in the sameway as in the search & rescue
scenario.

3) SHIP PROTECTION
In this scenario, we consider a ship with location (sx , sy),
initially placed at the boundary of the map. During the mis-
sion, the ship moves with a constant speed vs and constant
heading θs to the opposite side of the map. The tasks in this
scenario correspond to the set T , G ∪ U , where G =
{g1, . . . , gr } ⊂ W is a finite set of a priori known grid cells
andU = {u1, . . . , un} ⊂W is a finite set of unknownmoving
targets. Unlike all previous scenarios, cells here are searched
continuously since targets can move across different cells and
might appear in a cell already searched. Each agent knows, for
each cell gi, the elapsed time tgi since the last time that some
agent searched that cell. A cell is said to be searched when an
agent reaches the center of the cell, at which point tgi is reset
to 0. Agents broadcast the locations of all newly discovered
targets in the cells and the timestamps at which the cells were
last searched.

As agents search the space, they can detect, classify and
track, if necessary, all moving targets in the map in order to
protect the ship. There are two types of moving targets in
the setU : adversarial and non-adversarial. Adversarial targets
move towards the ship using a directed random walk while
non-adversarial targets move randomly in themap. All targets
move along piece-wise linear trajectories and remain within
a threshold distance δs from the ship. Let θui be the heading
of each adversarial target ui ∈ U . This heading is changed
randomly at fixed intervals of time, otherwise it is computed
using the current location of the ship (sx , sy) and the location
of the target (uix , uiy) as

θui = tan−1(
sy − uiy
sx − uix

). (16)

The heading for each target is sampled from [−90◦, 90◦]
and the target speed can vary between 0 and vu, which is set
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to be strictly less than the agents’ max speed. We do this to
ensure that the agents succeed in tracking all the targets.

In addition to the sensor radius Rd that each agent uses for
detecting targets, we define a classification radius Rc. When
a target moves within an agent’s classification radius, it can
be classified as adversarial or non-adversarial by the agent.
We set Rc < Rd in order to move agents closer to targets
in their effort to classify them. If the target is found to be
adversarial, the agent proceeds to track it by moving towards
the target using a proportional controller with control law,

w = kp(xui − xai)+ vui, (17)

where kp is the controller gain, xui is the current position of
target ui, xai is the current position of agent ai, and vui is the
current velocity of ui. An adversarial target is considered to
be tracked when an agent moves within a threshold distance
δT of the target’s location. A tracked adversarial target will
move away from the ship towards the boundary of the map
and eventually leave the map for the rest of the mission.
A non-adversarial target successfully classified by an agent
is considered to be tracked immediately after. A tracked non-
adversarial target will continue to move along its trajectory
unaffected by the agent’s actions.

Newly discovered targets are added to the set of known
tasks K, initially set equal to G. Newly tracked targets are
added to the set Z ⊆ U , which is empty at the start of the
mission. Thus, Si is the sequence of pi tasks (grid cells and
moving targets) in K that are assigned to ai. The mission is
finished when the ship reaches the opposite side of the map.

The max objective O(X ) considered in this scenario is to
find a task assignment X ∗ = {S1, . . . , Sn} such that

O(X ∗) = max
X
−k0F(X )+ k1h1(X )+ k2h2(X ), (18)

where F(X ) is the max travel cost to be accrued by each agent
ai ∈ A performing its assigned task sequence Si over all
agents. This term is weighted by k0, a user-specified value.
We define this term as

F(X ) = max
ai∈A

q(Si). (19)

The cost function q(Si) is defined as in Eq. (15) where
ci(uk ) corresponds to agent ai’s cost of tracking a moving
target or visiting a grid cell in K.

The second term in the objective is the expected distance
to the ship over all unassigned cells and is defined as

h1(X ) = min
g∈G\

⋃
ai∈A Si

ptgds(g), (20)

where p is a value in (0, 1), tg is the time elapsed since cell
g was searched and ds(g) is the distance between the center
of the cell and the location of the ship. The effect of h1(X ) is
to prioritize searching unassigned cells that are closer to the
ship and that have not been visited for a longer time.

The third term in the objective is the minimal distance to
the ship over all untracked targets and is defined as

h2(X ) = min
u∈K\Z

ds(u), (21)

where ds(u) is the distance between the target’s location
and the ship. The effect of h2(X ) is to prioritize tracking
targets that are closer to the ship. The terms h1(X ) and
h2(X ) are weighted by k1 and k2, respectively, both of
which are user-defined coefficients. Thus, the max objective
is equivalent to a weighted combination of minimizing the
maximum distance traveled over all agents, maximizing the
minimum expected distance to the ship over all unassigned
cells and maximizing the minimum distance to the ship over
all untracked targets.

A second objective that we consider across all scenarios
is the min-max number of transmitted messages, whether
received or not. Both performance metrics, max travel dis-
tance (equivalent to mission time) and number of transmitted
messages, are critical in a number of applications in which
agents may experience limited communication such as area
coverage [47], environmental monitoring [49], emergency
management [50], and search & rescue missions [51].

VI. EXPERIMENTAL SETUP
The simulation framework is built in the Robot Operating
System (ROS) [52] Kinetic. Two types of modules are imple-
mented: agent and environment. The task allocation algo-
rithms, written in Python, are executed in the processing unit
of each agent module every 0.1s. Once a task assignment is
obtained, the agent starts moving towards the task location
unless it receives a message from another agent indicating
that the task has already been completed. Onlywhen the agent
arrives at its assigned task will it proceed to complete its
next assigned task. The agents communicate their solutions
and heartbeat messages over the ROS network through a
communication interface written in C++. Separate processes
for all agents are used in order to simulate a decentralized
system. Only one process is used for the environmentmodule.
The environment module simulates the agents as point robots
as well as the 2D map in which the agents move. We assume
a collision free model for the agents. To move in the map,
the agent module sends a request to the environment simula-
tor, which provides odometry sensor readings for the agent.
For more details about this framework, see [2].

We ran all simulations on an AMD Ryzen Threadripper
2990WX, 32-core, 3 GHz CPU with 32 GB RAM. In all
scenarios except for the ship protection scenario, simulations
were terminated when at least one agent came to know all
target locations had been visited. In the ship protection sce-
nario, simulations were terminated when the ship arrives to
the other side of the map.

Regarding the communication topology, we assume a full
mesh topology in which every agent attempts to commu-
nicate with every other agent by continuously broadcasting
messages. The Rayleigh Fading model is used to determine
whether or not a message is dropped. Thus, the topology of
the network is sparse and changes as a function of space and
time.

At the beginning of each simulation, a list of winning bids
is initialized to a large number of tasks for all agents. This list
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is set so that all bids are set to a very large value. When
performing ACBBA or any other multiple-task assignment
method, a sequence of n tasks is derived from the list of
winning bids. In the case of CBAA or any other single-task
assignment method, n is set to 1.

A. DETERMINATION OF COMMUNICATION
THRESHOLD VALUE
Using the Rayleigh Fading model, results from [2] showed
that the performance ranking of the task allocation algorithms
tested changed at a sensitivity threshold value of −25 dB
for the visit scenario and −35 dB for the search & visit
scenario. Thus, we define values below−35 dB as high com-
munication and values above−35 dB as low communication.
For each sensitivity threshold value tested in [2], we ran
experiments to compute the corresponding communication
estimate. We then set the value of ct to the communication
estimate at which communication levels change from low to
high. Theoretically, one could vary the sensitivity threshold
values to simulate high and low communication as done
in [2]. However, this would not be feasible in a physical
implementation since the sensitivity threshold is inherent to
the agent’s hardware. Instead, in this work, we choose to vary
the path loss exponent γ , which is equivalent to generating
different amounts of clutter in the environment [53]. In addi-
tion, we choose to trigger communication changes at every
channel in the environment. This would apply to scenarios
in which the environment is changing at a large scale due to,
for example, changing weather conditions. We consider this
to be a first step for simulating and testing communication
changes in the environment which can happen in more com-
plicated ways. For instance, select regions of the environment
can experience more clutter than other regions which would
require triggering communication shifts per communication
channel. However, simulating such communication shifts is
beyond the scope of this work. We describe the experi-
ments ran to set the value of ct and the ranges of γ values
in Appendix A.

B. DESIGN OF METAREASONING EXPERIMENTS
To test the metareasoning policy, we first identified the best
performing algorithms under high and low communication
levels for each type of scenario. For the search & rescue
scenario, we selected the best performing algorithms based
on the results from [2]. For the fire monitoring and ship
protection scenarios, we ran experiments to characterize the
performance of each of the 5 algorithms considered under
different levels of communication. These experiments were
performed using the optimal algorithm parameters for each
scenario and the optimal weighting coefficients k0, k1 and
k2 in the objective function for the ship protection scenario.
The experiments ran to determine k0, k1 and k2 are described
in Appendix B. Details on the experiments ran to find the
optimal algorithm parameters for the fire monitoring and ship
protection scenarios are presented in Appendix C.

TABLE 3. Algorithm specified by the policy for each level of
communication and type of scenario.

To evaluate our metareasoning policy, we tested various
initial conditions for the number of agents and the number of
tasks. A description of the experiments used to evaluate the
performance of each algorithm as well as the metareasoning
policy for all the scenario types considered can be found in
Appendix D. Each scenario instance is generated by setting
the number of agents and the number of targets in addition
to other scenario specific parameters via uniform random
sampling from specified ranges. A summary of these ranges
is shown in Appendix D.

Our policy as well as each algorithm used in the policy
were tested on multiple instances of each scenario type at
two different switching conditions of communication: low
to high and high to low. These conditions represent possible
ways in which communication may change during a mission.
We sampled values for γ from [2.0, 3.0] to simulate high
communication and from [4.5, 5.0] to simulate low com-
munication. We set the switching time for communication
t1 as a random value in [5, 15]. The heartbeat rate is set
to 5 messages per second. A total number of 50 instances
was generated for each type of scenario and communication
switching condition. The total number of experiments was
50× 2× 4 = 400.

C. SELECTION OF ALGORITHMS
We selected the algorithms for the metareasoning policy for
each type of scenario from the results obtained. See Table 3.
for a summary of these results. We show statistical analysis
results obtained using theWilcoxon Rank Test (WSR) [55] in
Fig. 6 and Metrics Trade-off plots (MTP) in Fig. 7.
For the firemonitoring scenario, Fig. 7 shows that ACBBA,

HIPC, DHBA and CBAA were the best performing algo-
rithms on average at high communication, while ACBBA,
CBAA and PI were the best performing algorithms on aver-
age at low communication. From the WSR test results,
we observe that at high communication, algorithm pairs
(CBAA, ACBBA) and (DHBA, ACBBA) exhibit statisti-
cal difference in messages transmitted and max distance
traveled, while (ACBBA, HIPC) shows no statistical differ-
ence in either performance metric. Since the MTP shows
that ACBBA obtains the minimum max distance traveled,
we select ACBBA at high communication. At low commu-
nication, we note that (ACBBA, CBAA) shows no statistical
difference in max distance traveled, while (PI, CBAA) shows
no statistical difference in either metric. Thus, we choose
CBAA over PI since it achieves the lowest number of mes-
sages transmitted on average as shown in the MTP.
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FIGURE 6. For each communication level and pair of algorithms tested, we show the statistically significant differences observed using the Wilcoxon
Signed Rank test for the fire monitoring and ship protection scenarios with respect to the performance metrics.

FIGURE 7. Metrics trade-off analysis results for the fire monitoring (left) and ship protection (right) scenarios. On the left, we show the
non-dominated solutions (best performing algorithms on average) with respect to the max number of transmitted messages and/or max
distance traveled. On the right, we show the non-dominated solutions with respect to the max number of transmitted messages and/or min
distance to the ship. Non-dominated solutions are connected by lines colored differently for each sensitivity threshold value tested. Darker
lines signal higher communication. Blue arrows indicate the direction in which system performance improves for each performance metric.

For the ship protection scenario, we note that PI, ACBBA
and DHBA were the best performing algorithms on average
at high and low communication. At high communication,
we note that (PI, ACBBA) shows statistical difference in
max distance traveled and number of messages transmitted,
while (PI, DHBA) does not exhibit statistical difference in
max distance traveled. Amongst these algorithms, we choose
PI over ACBBA since it maximizes min distance to ship.
Similarly, at low communication, we choose DHBA over
ACBBA due to its better performance with respect to min
distance to ship.

Since our metareasoning policy involves switching from
a multiple task allocation algorithm (i.e. ACBBA) to a sin-
gle task allocation algorithm (i.e. CBAA) and vice-versa,
each agent will continue performing its current task at the
time of switching, but its sequence of tasks is reset. A new

single task or sequence of tasks is then computed using
the new task allocation algorithm. At low communication,
multiple agents may pursue the same tasks initially. However,
as agents travel in the same direction, they may gain enough
communication between them to reach consensus on the
remaining tasks. If not, this may lead to some repeated
tasks.

In addition, depending on the location of targets, using
a single task allocation algorithm may not be as efficient
as using a multiple task allocation algorithm, particularly in
instances in which an agent is closer to multiple targets while
another agent is far away from these targets.With a single task
allocation algorithm, the far away agent may be tasked with
visiting at least one target and may travel towards its location
unnecessarily since the agent closer to this target maywin this
task ultimately.
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FIGURE 8. Trade-off analysis for the metareasoning policy and each individual algorithm used in the policy. Best expected performing methods
are connected by a line and are displayed as shaded circles. Methods with sub-optimal solutions are displayed as shaded diamonds.

VII. RESULTS
In Figs. 8 and 9, we show our compiled results for the two
communication switching conditions tested and each type
of scenario. We use trade-off analysis to demonstrate the
difference in performance between the metareasoning policy
and each individual algorithm used in the policy with respect
to the metrics chosen: max distance traveled, max number of
transmitted messages, and min distance to the ship (applica-
ble only to the ship protection scenario).

We make a few important observations from these results.
First, for the search & rescue scenario, the policy was the
best expected performing strategy under low to high com-
munication, but under high to low communication, it only
performed better in terms of max number of transmitted
messages. Thus, we obtained a trade-off between ACBBA
and the metareasoning policy.

In the fire monitoring scenario, the metareasoning policy
provided a trade-off with ACBBA under high to low commu-
nication. In this communication scenario, the policy obtained
the best expected performance in terms of max distance

traveled while ACBBA resulted in a slightly lower number
of transmitted messages. Under low to high communication,
both ACBBA and the policy, are the non-dominated expected
solutions. A possible reason for this is the target distribution,
in which newfire targets appear near other targets. Agents can
get an assignment of multiple nearby targets at once using
ACBBA; thus, switching their allocation to a single-task
assignment like CBAA may have spread out agents towards
targets emerging in different fire clusters, resulting in a larger
max distance traveled.

For the ship protection scenario, the policy performed
better on average with respect to max distance traveled com-
pared to PI and DHBA. With respect to min distance to ship,
the policy only performed better on average under low to high
communication. Thus, the policy was more effective in terms
of minimizing the max distance to track adversarial targets
while DHBA was more effective in terms of maximizing the
min distance to ship.

The results obtained demonstrate that on average,
the policy outperforms running a single algorithm more
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FIGURE 9. Trade-off analysis for the metareasoning policy and each individual algorithm used in the policy for the ship protection scenario.
The analysis with respect to max distance traveled and messages transmitted is shown in the top row. The analysis with respect to min
distance to ship and messages transmitted is shown in the bottom row. Best expected performing methods are connected by a line and are
displayed as shaded circles. Methods with sub-optimal solutions are displayed as shaded diamonds.

consistently under low to high communication scenarios.
Moreover, when agents experienced low communication at
the start, metareasoning proved to be more effective when
communication improved at a later time. However, when
agents started with high communication, changing their task
allocation scheme seemed to be less effective. A reason for
this may be that agents can reach consensus early on if they
are able to communicate successfully at the beginning and
may not benefit from changing their already computed solu-
tions as communication degrades. Note that agents perceive
low communication as they initiate communication, however
this is considered as a transient state of communication and is
not explicitly included as part of the overall communication
scenario. Also, observe that the max number of transmitted
messages for CBAA was consistently larger than the max
number of transmitted messages obtained for the other two
strategies. This can be explained by scenarios in which agents
were not able to receive messages about completed tasks. For
this reason, CBAA iterations continued to be executed until
at least one agent successfully received information about the
completion status of all tasks.

TABLE 4. Average percentages of repeated and missed tasks obtained by
the policy and each individual algorithm used in the policy for the search
& rescue scenario under high to low communication.

In addition to the trade-off plots, results for the aver-
age percentage of tasks completed by more than one agent
(i.e., repeated tasks) as well as the average percentage of
missed tasks are summarized in Tables 4. and 5. for the search
& rescue scenario and in Tables 6. and 7. for the fire monitor-
ing scenario. It can be observed that using only CBAA results
in a nonzero percentage of missed tasks on average. This was
not the case for ACBBA or the policy. Using only ACBBA
resulted in a larger percentage of repeated tasks on average
compared to using only CBAA or the policy.
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TABLE 5. Average percentages of repeated and missed tasks obtained by
the policy and each individual algorithm used in the policy for the search
& rescue scenario under low to high communication.

TABLE 6. Average percentages of repeated and missed tasks obtained by
the policy and each individual algorithm used in the policy for the fire
monitoring scenario under high to low communication.

TABLE 7. Average percentages of repeated and missed tasks obtained by
the policy and each individual algorithm used in the policy for the fire
monitoring scenario under low to high communication.

VIII. RELATED WORK
The following subsections describe related work in which the
concepts of metareasoning and decentralized task allocation
in MAS have been explored.

A. METAREASONING
Metareasoning research encompasses various approaches to
reason about one’s own thinking, memory and processing in
order to control different aspects of reasoning such as strategy
selection and allocation of resources. In regards to control-
ling strategy selection, metareasoning has been framed as
the problem of automated algorithm-switching in computer
science [27], [28].

In the context of cooperative MAS, metareasoning
approaches have been applied to coordinating the agents’
behavior, bringing new challenges as a result of agents per-
forming additional reasoning from which benefits gained
might depend on the reasoning and behaviors of other
agents [29]. For instance, Raja and Lesser [8] framed multi-
agent metareasoning as a decentralized coordination prob-
lem in which agents maintain a model of each other’s
meta-level control and coordinate the use of their reason-
ing resources. Sleight and Durfee [31] investigated an orga-
nizational design approach to coordinate both the agents’
behavior and their reasoning by identifying high-performing

behavioral patterns and prohibiting agents from reasoning
about behaviors counter to these patterns. The effectiveness
of metareasoning was shown in [9] for coordinating a team of
agents in a tornado tracking application, while [13] applied
a centralized controller to coordinate agents with limited
communication among them.

B. DECENTRALIZED TASK ALLOCATION
Many of the existing decentralized task allocation approaches
are consensus-based auction methods, in which agents place
bids on tasks and each agent acts as auctioneer and bidder.
A comprehensive survey of these methods can be found
in [14]. These approaches include CBAA and CBBA as
well as its asynchronous version, ACBBA [15], [16]. Shown
to have outperformed CBBA in various problem instances,
the PI algorithm [20] does consensus in the same way as
CBBA but uses a different valuation function to compute task
bids. To improve robustness to dynamic environments and
robot failures, Najanath and Gini [10] proposed an auction
approach in which each task is treated separately and inde-
pendently from other tasks.

Another class of decentralized task allocation methods
consists of optimization-based approaches, divided into
deterministic or stochastic optimization based approaches.
Ghassemi and Chowdhury [33] proposed a deterministic
optimization based approach in which the task allocation
problem is posed as a maximum-weighted matching of a
bipartite graph. Another deterministic optimization approach
is the DHBA [17], which uses the Hungarian algorithm [34]
to solve the task allocation problem and, unlike CBAA,
it replaces the auction phase with solving the task assignment
problem via the Hungarian method on a cost matrix.

Examples of stochastic optimization-based approaches are
the stochastic ant-colony optimization algorithm proposed
in [11] and the decentralized GA presented in [36]. The
decentralized GA was built as an extension of the GA
approach presented in [37] for decentralized systems. Under
full communication availability, Patel [36] showed that the
decentralized GA outperformed CBBA in a number of prob-
lem instances of a rescue scenario. However, it was also
shown that the performance of GA degrades significantly as
communication quality decreases.

This is not an exhaustive list of task allocation algo-
rithms available in literature. Thus, we refer the reader to
[38] and [39] for more comprehensive surveys of task allo-
cation algorithms.

With respect to communication-aware planning and task
allocation algorithms in which communication constraints
are explicitly considered, a survey of methods that jointly
optimize communication and navigation is presented in [3].
For instance, Ponda et al. [7] presented a modified CBBA
algorithm to predict the network topology and propose relay
tasks to repair connectivity violations. In [4], Ponda et al.
proposed a deconfliction protocol that the mission control
center applies to distribute tasks among sub-networks that
have low communication between them. Rantanen et al. [5]
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investigated the performance of ACBBA and explored sev-
eral network-based configurations to reduce performance
degradation caused by varying communication. Although
many advances have been made in modifying existing plan-
ning algorithms to perform better under limited communica-
tion, most multi-robot coordination algorithms are developed
under the assumption of perfect communication, which is
why in this work, we do not consider communication con-
straints, and instead, we seek to provide insights into the
benefits of switching between existing algorithms with the
goal of improving system performance.

In previous work [2] we performed a large set of statistical
tests to learn how different multi-agent task allocation algo-
rithms perform across different communication scenarios.
We leverage these results to help train our proposed meta-
reasoning approach. In addition to the scenarios considered
in [2], our current work includes two additional types of
scenarios: the fire monitoring and ship protection scenarios.
Similar to our approach, Amorim et al. [48] presented an
empirical assessment of different swarm-GAP algorithms
to solve the task allocation problem in dynamic scenarios.
However, we consider varying communication instead of
onboard sensor failure or loss of team members. We con-
duct experiments to assess the performance of the selected
algorithms for these additional scenarios and identify the best
performing algorithm for each scenario under various levels
of communication.

IX. CONCLUSION
In this paper, we describe a metareasoning policy that a
team of agents can execute to make effective meta-level
control decisions based on the communication availability in
the environment. Our policy was tested in various types of
scenarios with different types of task allocation problems.
We demonstrated that using the policy can lead to gains
in performance or trade-offs in terms of max distance trav-
eled and max number of messages transmitted compared to
running a single fixed strategy. Within the LTL framework,
this policy can be naturally extended to take into account
additional environment features and reactive behaviors using
LTL specifications.

In addition, with respect to communication, we would
like to investigate the effects of more complex communica-
tion scenarios, for instance, scenarios in which only certain
regions of the environment experience drops in communica-
tion quality. With respect to the metareasoning policy pro-
posed, one possible extension is to include in the portfolio
of task allocation algorithms considered, those that account
for communication constraints and investigate the benefits
of switching between such. This can also help us address
questions on how to better utilize information exchanged
among the agents and how to improve consensus under low
communication. With respect to metareasoning, future work
can be done to not only execute a prescribed policy, but also
modify the policy or generate new policies online. Another
important direction for future work would be to analyze

the scalability of the task allocation algorithms for a larger
number of agents.

APPENDIX A
DETERMINATION OF COMMUNICATION
THRESHOLD VALUE
To identify the value of ct , we ran 15 experiments of the
visit scenario described in [2] with 25 targets and 2 agents
for a single communication link. Since the communication
estimate is independent of the type of scenario, we limited the
experiments to this scenario. Initial locations for agents and
targets were randomly generated. We varied the sensitivity
threshold values from −75 dB to −25 dB in increments
of −10 dB. We computed the average over each agent’s
communication estimates for all time steps. We assume that
communication estimates make for a good representation
of the communication quality since we expect high quality
communication for lower sensitivity threshold values accord-
ing to the Rayleigh Fading model and hence high com-
munication estimates. Similarly, higher sensitivity threshold
values produce low quality communication and hence low
communication estimates. We computed the communication
estimate by taking the average over the estimates obtained
from all the agents. We then computed the mean estimate
from all 15 experiments for each sensitivity threshold value.
Fig. 10 shows that sensitivity threshold values above−35 dB
corresponded to mean communication estimates below 0.2.
Thus, ct was set to 0.2.

FIGURE 10. Communication estimate values are shown for different
sensitivity threshold values. Segmented line indicates the communication
estimate threshold value.

To simulate changes in communication, we first deter-
mined the ranges of values for γ corresponding to high and
low communication, respectively, based on ct . Generally,
values of γ range from 2 (less cluttered environments) to
5 (more obstructed areas) [53]. Thus, we ran the same
15 experiments described above with the difference that we
fixed PS to −65 dB and instead varied γ from 2 to 5 in
increments of 0.25. We used these experiments to iden-
tify the ranges of values for γ that would likely result in
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communication estimates above and below ct . Fig. 11 shows
that values from 2.0 to 3.0 resulted in mean communication
estimates above ct while values from 4.5 to 5.0 resulted in
mean communication estimates below ct .

FIGURE 11. Communication estimate values are shown for different path
loss exponent values. Segmented line indicates the communication
estimate threshold value.

APPENDIX B
DETERMINATION OF WEIGHTING COEFFICIENTS
FOR SHIP PROTECTION SCENARIO
Unlike the other scenarios, the ship protection scenario uses
a multi-objective function (18) to minimize max distance
traveled while driving agents to track targets closer to the ship
and continuously search cells in the workspace. The three
terms in the objective function are weighted by k0, k1 and
k2, respectively. For each algorithm we ran experiments to
determine the weights that exhibit the best performance on
average with respect to the minimum distance to the ship
amongst all targets. We chose this metric since protecting the
ship is the primary goal in this scenario.

Assuming perfect communication, we generated
40 samples for (k0, k1) using the Latin Hypercube Sampling
method [54]. We sampled k0 and k1 from [10, 1000]. This
range was determined empirically by analyzing the agents’
behavior at extreme values of k0 and k1 and verifying that
their behavior was different. At k0= 10 and k1= 1000, agents
often visited cells closer to the ship even when they were far
away from these cells. At k0 = 1000 and k1 = 10, agents were
often assigned to visiting cells that were closer to their own
locations. We also observed that k2 = 500 was an effective
value to make agents prioritize tracking targets for all values
of (k0, k1) tested. We performed 50 experiments with 5 agents
and 20 targets for each generated sample of (k0, k1) and
each of algorithm. Initial locations of agents and targets were
randomly generated. We set the number of adversarial targets
equal to the number of non-adversarial targets.

We computed the average and 95 percent confidence inter-
vals of the chosen metric across all experiments. Amongst
the 40 samples, we selected the 3 candidate samples with

TABLE 8. Best performing weights on average for the ship protection
objective function with respect to minimum distance to the ship.

TABLE 9. Best algorithm parameters for each algorithm: I (iteration
count) or (I B) (iteration count, bundle size).

the highest average minimum distance to the ship. From the
selected samples, we kept the one with the smallest confi-
dence interval as this indicated less variance across scenarios.
Table 8. shows the best performing weights on average for
all algorithms.

APPENDIX C
DETERMINATION OF OPTIMAL ALGORITHM
PARAMETERS FOR FIRE MONITORING AND SHIP
PROTECTION SCENARIOS
The parameter space of CBAA, DHBA and HIPC contains
the max iteration count I, and for ACBBA and PI, it contains
both I and max bundle size B. Values for the I and B tuning
parameters are chosen as follows: for each I ∈ {1, 2, 3, 4,
5, 10, 15, 20} and B ∈ {2, 3, 4, 5, 10, 20, 30, 40}. The
tuning was done assuming perfect communication. For all
the experiments, we used 7 agents, 22 targets for the ship
protection scenario and a max of 40 fire targets for the fire
monitoring scenario. We set the number of adversarial targets
equal to the number of non-adversarial targets in the ship
protection scenario.

We show the best tuning parameters for the fire monitoring
and ship protection scenarios and each algorithm in Table 9.
We set the iteration counts and bundle sizes according to [2]
for the search & rescue scenario.

APPENDIX D
DESIGN OF EXPERIMENTS
To compare the performance of the 5 algorithms for the ship
protection and fire monitoring scenarios, we used a similar
design of experiments and analysis as described in [2]. For
each type of scenario, we generated 50 instances with dif-
ferent parameter values shown in Table 10. and Table 11.
respectively. We varied the sensitivity threshold PS in the
range [−25, −75] dB in −10 dB increments. Every instance
was run at each sensitivity threshold.

For all scenarios, we used a randomized design of experi-
ments. The dimension of the map is N × N with N = 100.
We set the agent speed As = 6 units/s for all scenarios except

VOLUME 9, 2021 98727



E. Carrillo et al.: Communication-Aware Multi-Agent Metareasoning for Decentralized Task Allocation

TABLE 10. Parameter ranges for instance generation in the search &
rescue and ship protection scenarios. The * indicates parameter applies
only to the ship protection scenario.

TABLE 11. Parameter ranges for instance generation in fire monitoring
scenario.

the ship protection scenario. In this scenario, we used a
proportional controller and set the max As = 12 units/s so that
agents can track targets before they move out of sensor range.
The map is divided into 25 grid cells of size 20 × 20. The
detection radius Rd = 14.14 units (half length of diagonal of
grid cell) while the classification radius Rc = 8 units. We set
the threshold distance δT = 0.25 units.
For the search & rescue and ship protection scenarios,

target locations were sampled from a 2D Gaussian Mixture
Model described as follows,

pgmm =
1
K

K∑
i=1

N (µi, 6i), (22)

where K is the number of clusters, each with radius ri, center

at µi and co-variance 6i =

(
r2i 0
0 r2i

)
.

For the fire monitoring scenario, initial fire locations were
uniformly sampled from [0, 100]×[0, 100].We set additional
parameters including wind speed and wind direction.

For the ship protection scenario, we set the initial location
of the ship to (50, 0), heading θs = 90◦ and speed vs =
1.6 units/sec. In addition, we set the ratio of number of adver-
sarial targets to non-adversarial targets and exclude initial
locations of targets that have a distance <40 units from the
ship. We set the default speed for all moving targets as 4
units/sec. If adversarial targets are tracked, their speed is set
to 12 units/sec.

An instance is defined as one random sampling of the
parameters from the ranges mentioned in Table 10. for the
search & rescue and ship protection scenarios. For the fire
monitoring scenario, we used the parameters from the ranges
indicated in Table 11.

For all experiments, we set the Rayleigh fading model
parameters as N = 64, d0 = 1m, PT = 30 dB, and PL0 =
40 dB as suggested in [2].
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