
Received November 15, 2018, accepted November 30, 2018, date of publication December 7, 2018,
date of current version December 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2885455

Hierarchal Application of Receding Horizon
Synthesis and Dynamic Allocation for
UAVs Fighting Fires
JOSHUA A. SHAFFER , ESTEFANY CARRILLO, AND HUAN XU, (Member, IEEE)
Department of Aerospace Engineering, University of Maryland at College Park, College Park, MD 20742, USA

Corresponding author: Joshua A. Shaffer (jshaffe9@terpmail.umd.edu)

This work was partially funded by Lockheed Martin and NAVAIR.

ABSTRACT This paper explores the design of a high-level mission planner and controller for managing
unmanned aerial vehicles (UAVs) fighting awildfire through the utilization of reactive synthesis and dynamic
allocation of the UAVs as resources for the fire. The contribution of this paper is a study on the hierarchal
integration of reactive synthesis, used for assuring desired system design traits, and dynamic allocation, used
for making heuristic-based decisions. Reactive synthesis provides a formal means of guaranteeing the UAVs’
transition to areas of fire, refill of water, and land as defined by the linear temporal logic specifications.
Dynamic allocation coordinates the behavior of multiple UAVs through assignments to regions of fire based
on a cost function that takes into consideration the fire locations relative to a UAV, distance to the domain
edge, wind speed and direction, and the amount of suppressant already present. The use of receding horizons
in the reactive synthesis formulation incorporates horizons defined only through spatial distance from a goal.
Modifications to these horizon definitions guarantee that the scenario still maintains the overall realizability
of the formal specifications after the inclusion of static obstacles. This paper shows the effectiveness of
multiple UAV fleets in slowing down the progression of fires from reaching the domain edge through six
fire scenarios. At last, our results and successful application demonstrate the utilization of reactive synthesis
in larger task spaces and the implications of abstracting UAV transitions for use in formal methods.

INDEX TERMS Reactive synthesis, receding horizon, temporal motion planning, distributed controllers,
unmanned aerial vehicles (UAVs), aerial fire suppression.

I. INTRODUCTION
Reactive synthesis, a means for generating controllers of
complex systems using formal specifications, has seen a
surge in research over the past decade. The primary ben-
efit and motivation for research using this method is the
correct-by-construction attribute: the synthesized controllers
take into account system and environment variables with
varying dynamics and initial conditions, and are guaranteed
to meet the designed progress and safety specifications for
a system, assuming the environment behaves as formally
described. Hence, programmers are not required to ‘‘hand-
craft’’ individual behaviors of a system under specific con-
ditions (of which are often error prone) and can instead
focus on defining the system and specifications in relation
to an environment. The major difficulty of using reactive
synthesis is the computational burden in dealing with large
numbers of environment and system variables, especially

observable when considering dynamic environments as
discussed in [1].

Consider, for example, a robot planning problem involving
a 10×10 grid in which obstacles could appear at any location.
A synthesized controller would need to account for 2100

permutations, resulting in an inordinate computation time.
Unfortunately, real-world problems can easily involve this
scenario’s scale of permutations in the environment, hence the
difficulty of using reactive synthesis. In many cases, this type
of problem would not be tackled by using reactive synthesis
and instead handled by an algorithm developed for such
a task. When using such a tailor-made algorithm, though,
the correct-by-construction attribute is lost alongside the ben-
efit of incorporating larger pieces of the system design from
the start. Therefore, it is still beneficial to explore methods
in which the majority of the design is handled by reactive
synthesis and integrated with simpler methods of handling
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large environment definitions. For this paper, we examine a
relevant application, specifically involving fighting wildfires,
in which the objective space (i.e. the progress specifications
tied to environment moves) is expansive and the total objec-
tive does not have strict bounds on what constitutes success
versus failure.

Current methods for fighting fires involve numerous
ground workers and piloted vehicles, including aerial vehi-
cles capable of dropping large amounts of suppressant over
regions of fire. The economic burden of wildfires on the
United States (in 2016 $US) exceeds $63.5 billion annu-
ally due to damages, and more than $7.6 billion is spent
annually to fight said fires [2]. Aerial vehicles with sup-
pression capabilities have served as critical tools in slowing
down the growth of fires due to their far greater range of
maneuverability when compared to ground crews [3]. Often
these aircraft can change the outcome of a wildfire if used
to attack a small fire early enough. As discussed in [4] and
explored in [5], unmanned aerial vehicles (UAVs) pose a huge
benefit to traditional firefighting methods, with the foremost
advantage of creating additional ‘‘eyes in the sky’’ and supply
drops. These use cases have motivated numerous agencies to
explore such options in the last decade. In terms of direct
suppression, automated UAVs were used to extinguish fires
on their own as was mechanically demonstrated on a small,
single-UAV scale in [6] and through Lockheed Martin’s use
of the K-MAX and Stalker XE in [7]. The creation of a
fleet of mid-sized autonomous drones for quick response to
fledging small-scale wildfires, in turn, could limit the number
of required personale to a site and produce more efficient
results. Given this problem concept, a formal description of
such would require a large number of environmental vari-
ables due to the chaotic behavior of the fire. This serves
as an apt example of the type of problem many reactive
synthesis-based research endeavors tend to avoid.

When the high-level design of a system does involve large
scale environmental permutations and state spaces, solutions
typically seek to discretize the synthesis problem or approach
the problem from a different perspective. Discretization
appears in the use of receding horizon control in [8] and the
use of decentralized controllers for multiple agents in [9].
Both examples break down the top-level synthesis problem
into smaller, discrete pieces for the computation benefits.
On the other hand, [10] approached their synthesis problem
with a focus on resolving deadlock under specific environ-
ment conditions instead of directly avoiding dynamic obsta-
cles. In each of the presented cases, the problem description
focused on a limited task space (i.e. the number of progress
goals) and how the solution can handle larger sets of actions
from an environment in relationship to safety specifications.
The maximum state space size of [8]–[10] were up to the
order of 100 variables (for [10] specifically), but the task
space for each scenario explored never exceeded 4 progress
statements.

For the purposes of fighting large, dynamic fires with a
single autonomous UAV system represented by a state space

abstraction size of 2 orders in magnitude or greater, a high-
level controller created with just reactive synthesis could
quickly present an impractical solution if the design should
accommodate a fairly granular environment space. Further
expanding this concept to a whole fleet of UAVs, the problem
worsens due to an increase in the number of system variables
proportional to or greater than the number of UAVs, if con-
sidering centralized controllers. Even with decentralized con-
trollers for each UAV, additional system variables might
need to be introduced to describe coordination and behaviors
between the decentralized UAV controllers. To alleviate the
computational complexity on reactive synthesis in this regard,
the coordination of UAVs can be handled by a dynamic allo-
cation process. Dynamic allocation presents an autonomous
method for assigning resources in an ever-changing environ-
ment. For example, in [11], the resource allocation prob-
lem is framed as a multi-objective optimization problem of
minimizing the extinguishing time and resource utilization
cost, solved by the use of evolutionary algorithms. In [12],
the fire behaviors and results due to resource allocation are
formulated as a Markov Decision Process, from which a
Monte Carlo tree search is used to determine the best areas
to allocate resources.

We examine a simplified optimization allocation strategy
to address the assignments of UAVs for our fire fighting
scenario. If the fleet of UAVs are treated as resources to
manage with respect to a changing fire landscape, dynamic
allocation would serve well in assigning the UAVs to spe-
cific fires. Assignments would depend upon factors in the
behavior of the fires such as density, ability to spread, wind
and direction, and more. An allocation algorithm would not
necessarily be constructed to control the UAVs within the
state space defined, nor would the algorithm manage other
high-level system aspects associated with the UAVs, such as
suppressant control and decisions on landings. Building these
high-level behaviors into an allocation algorithm requires
‘‘handcrafting’’ these behaviors for all scenarios, an approach
that synthesis, on the other hand, is well suited to avoid.

To integrate the two discussed methods-reactive synthesis
and dynamic allocation-we utilize a receding horizon frame-
work for reactive synthesis as discussed in [1]. As far as we
have found, [13] first touched upon the idea of manipulating
the receding horizon framework for decomposing the syn-
thesized problem and decentralizing the planning procedure.
For their purposes, this idea resulted in the ability of mul-
tiple agents to satisfy high-level specifications through only
considering other agents that entered their local horizon. For
our purposes, decentralizing the planning procedure allows
for dynamic allocation to arrange the order of progress goals
specified in the synthesized controller in real-time. Through
this, we seek to reconcile the strengths and weaknesses of the
two discussed methods to create a high-level mission planner
and controller for implementation in a fire fighting scenario.

The contributions of our paper are as follows. First,
the implemented receding horizon modification and dynamic
allocation demonstrates combining correct-by-construction
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designs hierarchically with heuristic-based methods. Next,
we introduce an algorithm (and proof) formodifying horizons
initially defined only by spatial distance to preserve the real-
izability of the total specification, enabling the application
of the template to all goals while including static obstacles.
Last, we present results and discussions on the effectiveness
of our solution to a simulation environment that uses standard
wildfire models. The paper is structured as such. In Section II,
we present subjects pertinent to the exploration of our topic,
primarily in relation to reactive synthesis. In Section III,
we present the fire fighting scenario, including environment
and system definitions. Section IV discusses our proposed
solution, followed by the implementation of our solution in
Section V. In Section VI, we present the outcomes to our tested
cases, followed by our conclusions in Section VII.

II. PRELIMINARIES
Linear temporal logic (LTL) is utilized for describing specifi-
cations within the reactive synthesis framework. LTL makes
use of boolean system variables that serve as atomic proposi-
tions (AP), and LTL propositional formulas are built through
APs with logic connections and temporal modal operators.
Logic connections include ¬ (negation), ∨ (or), ∧ (and),
and H⇒ (implication). Temporal modal operators include
© (next), � (always), ♦ (eventually), and U (until).
Through the use of LTL, a broad range of specifications can
be written to describe the behaviors of a system or envi-
ronment. We point the reader to the preliminaries section
of [14] for an expanded description of LTL as it pertains to
our purposes.

Reactive synthesis provides a method for generating con-
trollers within the context of a defined environment and
system as specified through LTL. The assume-guarantee form
of (1) is one of the most commonly used forms for these
LTL formulas due to its proven polynomial synthesis time
instead of exponential. This equation is also called general
reactivity(1) and described further in [14],

(ϕeinit ∧
∧
i∈Ir

�ϕes,i ∧
∧
i∈If

�♦ϕep,i)

−→ (ϕsinit ∧
∧
i∈Is

�ϕss,i ∧
∧
i∈Ig

�♦ϕsp,i). (1)

From the above equation, the propositional formula ϕinit
describes the initial condition of the environment or sys-
tem (denoted by superscript e or s, respectively), ϕs,i
describes safety specifications, and ϕp,i describes progress
specifications.

Reference [1], [15], and [16] have explored reactive syn-
thesis within a receding horizon (RH) framework. The pri-
mary benefit of utilizing RH is the segmentation of the state
space for both the environment and system into separate
horizons. Each horizon provides a smaller problem for which
to synthesize a controller, and the combination of these con-
trollers forms a single controller that obeys the specifications
written for the total system and environment. The primary

disadvantage of RH is that while each horizon itself can be
optimized, the total space is not. Other sources have explored
methods of optimizing control with respect to time-based
rewards on each horizon, such as in [16], but such optimiza-
tion is beyond the scope of this paper.

FIGURE 1. Segmentation of state space and example of ordered set
flow-down performed in receding horizon framework, as described in [1].

For each progress specification, the implementation of RH
segments the total system state space into regionsWj so that,
when placed into properly constructed ordered sets F i(W i

j ),
the system variables will converge to meeting each progress
statement for the system progress goal at W0. This is shown
in Fig. 1. Here, i represents the system progress statement
i ∈ Ig, and j indexes the ordered regions W about the
progress specification i. Following the basis laid out by [1],
each region consists of its own GR(1) specification (shown
in (2)), constructed so that the synthesized controller will
move the system states towards the next region within the
ordered set (eventually leading to j = 0) and fulfill the top
level GR(1) specification,

9 i
j = ((s ∈W i

j ) ∧8 ∧
∧
i∈Ir

�ϕes,i ∧
∧
i∈If

�♦ϕep,i)

−→ (
∧
i∈Is

�ϕss,i ∧�♦(s ∈ F i(W i
j )) ∧�8). (2)

In (2), s refers to the system state. The formula 8 con-
sists of all limitations on the states of system, preventing
the system from making transitions to or initializing within
states that are not allowed. This tautology prevents individual
synthesized controllers from creating transitions to states that
are infeasible for other horizons.

III. PROBLEM FORMULATION
The high-level problem scenario this paper explores is pre-
sented as such. A 450-by-450 meter region of flat grassland,
segmented by various large-scale obstacles, is experiencing
a wildfire. Fires spread from starting regions under fixed
environmental conditions (e.g. wind speed and direction) and
with any arbitrary initial conditions. A base of operations
exists near the edge of the region and contains a fleet of N
UAVs for fighting the fire. Fig. 2 visualizes the abstracted
region for this problem.
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FIGURE 2. 2D grid partition of problem location with environmental
indicators.

Each UAV holds a varying level of suppressant for dump-
ing on the fire, from High (100%), Medium (66%), Low
(33%), to Empty (0%), associated with a total water volume
of Wv = 125 liters (requiring a moderately large UAV).
Each individual UAV contains a radio for communicating
with base, GPS for determining position, and any other sen-
sors required for lower-level controllers. Each UAV’s average
flight speed, v, is approximately 15m/s. Design constraints on
the UAVs require the need for periodic landing and enforce-
ment of in-flight kinematics resembling fixed-wing behavior.
The design goal of this fleet is to significantly slow down the
fires’ spread to the outer edge of the domain as compared to
the fires’ natural growth.

The formal definition of the abstracted system space is
provided in Definition 1.
Definition 1: The state set is defined as S = Sp × So ×

W, where the position set is Sp = {(1, 1), (1, 2), (2, 1), . . .
(10, 10)}, the orientation set is So = {0◦, 90◦, 180◦, 270◦},
and the water level set is W = {0%, 33%, 66%, 100%}.
A single UAV at any given time is represented as an element
s ∈ S. For the elements of s, sx,y is used to represent the
position tuple (where x and y can take the position values of
the tuple), so is used to represent the orientation, and w is
used to represent the water level.

Note that the above definition implies that each position
represents a cell of 45-by-45 meters. Furthermore, viable
transitions for the UAVs between elements in the state space
are defined assuming 3 transition scenarios, a sped up coun-
terclockwise turn, a sped up clockwise turn, and a straight
drive ahead. These transition scenarios result in the follow-
ing transition system described in Definition 2, visualized
in Fig. 3.
Definition 2: The transition relation for the state set S is

defined as T = {s → s′ ∈ R ⊆ S × S}, where elements
s→ s′ ∈ R are defined for each allowable s′ per s ∈ S under
the following conditions.
If so = 0◦ :

s′x,y =


(sx , sy), s′o = 0◦

(sx + 1, sy), s′o = 0◦

(sx + 1, sy + 1), s′o = 90◦

(sx + 1, sy − 1), s′o = 270◦

FIGURE 3. Possible transitions for UAV within grid given starting
orientation and location.

If so = 90◦ :

s′x,y =


(sx , sy), s′o = 90◦

(sx , sy + 1), s′o = 90◦

(sx + 1, sy + 1), s′o = 0◦

(sx − 1, sy + 1), s′o = 180◦

If so = 180◦ :

s′x,y =


(sx , sy), s′o = 180◦

(sx − 1, sy), s′o = 180◦

(sx − 1, sy + 1), s′o = 90◦

(sx − 1, sy − 1), s′o = 270◦

If so = 270◦ :

s′x,y =


(sx , sy), s′o = 270◦

(sx , sy − 1), s′o = 270◦

(sx − 1, sy − 1), s′o = 180◦

(sx + 1, sy − 1), s′o = 0◦

Depending on the location of static obstacles and bound-
aries, elements within the described transition relation are
restricted from the general case if they violate the reachability
property of the system, as defined through Definition 3. This
implies that the existence of obstacles requires limitation
on allowable states S in the system specifications. A graph
search for paths that lead to dead ends is an accessible way of
determining these states.
Definition 3: The system S is defined as reachable if there

exists a path of states, composed of a finite number of subse-
quent transitions in s→ s′ ∈ T ⊆ S × S, such that all s ∈ S
can be eventually reached from any other initial state s ∈ S.

The formal definition of the abstracted environment space
is provided inDefinition 4. Note that this general environment
definition is expansive in size (up to 2100+N combinations,
where N is the number of fires). Also note that this environ-
ment definition serves as an abstraction to amore complicated
fire growth model, described in further detail in Section V.
Definition 4: The fire environment is defined as Fx,y =

(x, y) × {True,False} for any valid choice of x and y in the
system domain, excluding the base and obstacle locations.
The element fx,y ∈ Fx,y corresponds to the presence of fire
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(i.e. True or False) associated with the tuple (x, y). The total
possible environment is the combination of all Fx,y sets with
the landing signal sets of each UAV, i.e. E = F1,1 × F1,2 ×
F2,1,× . . .F10,10 × Sland,1 × Sland,2 × . . . Sland,N , where
Sland,n = {True,False} corresponds to the landing signal of
the nth UAV.

Under these formal definitions on the system and environ-
ment, the desired design for each UAV are as follows. First,
each UAVmust fly to any region in the state space associated
with an active fire (Eq. (3)), dumping a fraction of its water
supply if possible (Eq. (4)),

ϕs1 =
∧
(x ′,y′)

�(fx ′,y′ −→ ♦(sx,y ↔ (x ′, y′))), (3)

ϕs2 =
∧
(x ′,y′)

�((w > 0% ∧ fx ′,y′ ∧ (sx,y ↔ (x ′, y′)))

↔©w = w− 33%). (4)

Next, each UAV must return to base for replenishing water
supplies when empty (Eq. (5)) and the water level must
refill to the max level when the UAV reaches base (Eq. (6)).
Outside of any condition that forces the water level to change,
the water level must remain constant (Eq. (7)). Note that base
is an AP that is True when sp matches the associated (x, y)
tuple for the base,

ϕs3 = �(w = 0% −→ ♦base), (5)

ϕs4 = �((w = 0% ∧ base)↔©w = 100%), (6)

ϕs5 = �((! © w = 100%∧!© w=w−33%)↔©w = w).

(7)

The UAVs may experience landing signals and must land
for prolonged periods of time in the next available region not
consumed by fire (8),

ϕs6 = �((sland,n ∧ ¬fx,y)↔ (©sx,y ↔ sx,y)). (8)

Lastly, the order in which fires are addressed must be
prioritized by their capability of reaching the domain edge,
andUAVsmust allocate themselves in amanner that increases
their combined effect on the environment, a specification
represented by ϕspriority. This specification is an open area of
design, one in which a formal description of the fire behavior
ϕemodel and system response ϕspriority would require further
environment and system definitions, specifically in relation
to a model of wildfire dynamics. In the reactive synthesis
language, the problem we are attempting to solve is the total
specification:

ϕemodel −→
∧

i∈[1,6]

ϕsi ∧ ϕ
s
priority. (9)

[Note that the individual specifications in (9), specifically (3),
(4), and (5), are not in GR(1) form.]

Given (9) and the desired design, the problem we solve
is how to address the specifications ϕemodel and ϕ

s
priority and

‘‘synthesize’’ a controller for (9). Specifically, how can we
avoid introducing further variables to the synthesis problem

while capturing the intended behavior of (9) through utilizing
the formal tools discussed in the Preliminaries section along-
side a heuristic-based method of determining which fires the
UAVs should prioritize in order to suppress such?

IV. PROPOSED SOLUTION METHOD
We propose a solution method to the formulated problem
scenario that combines reactive synthesis with a dynamic
allocation algorithm. These two methods form a high-level
planner and controller that fulfills the design constraints
imposed on eachUAVand dictates the behavior of each one as
well as their collective maneuvers. Fig. 4 depicts a conceptual
view of the process of creating our solution and the duties that
each method performs. Fig. 5 depicts the direct relationship
between the allocation process and a synthesized controller.

FIGURE 4. Diagram of creating the solution method and the
responsibilities and roles for both the synthesized controllers and the
allocation process during real-time implementation.

FIGURE 5. Diagram of allocation process rearranging the progress goal
ordering (as depicted in Fig. 1) for a single UAV controller instance in
real-time.

As shown in Fig. 4, a common synthesized controller is
created for each of the UAVs through the RH framework with
the duties presented. Given any arbitrary initial condition,
the controller aims to progress to each viable partitioned
space, these progress goals represented within Fig. 4 by the
‘‘nodes’’ protruding from each rectangle. The order that the
controller meets these progress statements for a single UAV,
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shown previously through the ordering ofW i in Fig. 1, is not
dictated by the synthesized controller as typically performed
within the RH framework. Instead, the allocation process
decides which progress specification any single UAV should
pursue, represented within Fig. 5 by the switching of the
‘‘nodes’’’ order for any given moment in time, and the allo-
cation process is responsible for ensuring that each ‘‘node’’
can and/or will be fulfilled. Hence, the allocation process
prioritizes and assigns which goals a single controller should
meet next in real-time. The combination of these twomethods
in the described manner works to highlight the strengths of
each method. The synthesized controllers manage various
system oriented aspects of the design and path planning while
allocation governs the fleet behavior through assignments of
goals for each controller.

Previously mentioned in [6], a physical scenario was
constructed that dealt solely with one UAV gathering water,
moving to another location, and dumping said water on
the destination. Reference [6] demonstrates the existence of
lower level controllers that could manage the individual
actions necessary to achieve the high-level planner and con-
troller this paper proposes (at least for a smaller scale UAV).
So, as often expressed in other sources dealingwith high-level
synthesized controllers, we assume there exists low-level
controllers to dictate the motion of individual agents in
real-time.

V. IMPLEMENTATION
This section describes the construction and operation of the
synthesized controllers and allocation algorithm used for the
high-level controller. Additionally, the simulation used to test
such cases is also outlined.

A. SYNTHESIS OF CONTROLLERS IN RECEDING
HORIZON FRAMEWORK
The RH framework discussed generates individual synthesis
problems about each progress goal while maintaining all
safety specifications as formulated for the entire system.
For (3) and (5), translated GR(1) goals involve always even-
tually driving the system to the regions holding fire or the
base, invoked by the presence of fire or absence of held water,
respectively. For creation of the actual specifications used
in synthesis, we assume that the dynamic allocation process
correctly interprets the required conditions which force the
UAV to the base or fire (e.g. when the water level is empty,
instead of the synthesized controller interpreting such and
driving the UAV to base, the dynamic allocation recognizes
and forces the UAV to prioritize the goal associated with
base). As a result, (3) and (5) are simply reinterpreted as (10)
and (11), respectively. Therefore, the specifications used in
synthesis will include the safety specifications shown in (4),
(6), and (8) alongside these simplified goal specifications,∧

(x ′,y′)

�♦(sx,y ↔ (x ′, y′)), (10)

�♦base. (11)

For the common synthesized controller, the formal envi-
ronmental description described beforehand is broken down
to the relative signals as perceived by a single UAV and
manipulated by either the allocation method or the naturally
occurring environment. These Boolean variables consist of:
sland , representing whether or not the UAV needs to stop
due to a landing signal; fd , representing the presence of
fire directly beneath the UAV; and drop, representing the
allocation process’s signal to a UAV for dropping water on
the assigned goal location. Hence, the relative environment
Er = {sland , fd , drop}.

The environment specifications for a single UAV are listed
as follows:

ϕeinit = {}, (12)

ϕes = {}, (13)

ϕep = �♦drop ∧�♦¬sland ∧�♦¬fd . (14)

Equation (12) and (13) show that no guarantees are pro-
vided on the environment’s initial condition and safety behav-
ior, and (14) states that always eventually allocation instructs
the UAV to drop water, the UAV will experience engine
failure, and the UAV will not fly over fire.

The system consists of S as described in Definition 1.
Additional APs goal and basewere created for when the UAV
enters a specified goal location and the base location, respec-
tively. These revised definitions are used to form updated
specifications in GR(1) form for each set of horizons about
each goal.

The system specifications from Section III were formally
defined about each goal tied to a tuple (x, y) for each UAV :

ϕsinit = 8. (15)

Equation (15) reflects that a UAV will start in a state allowed
by 8 (the RH tautology that governs feasible states). In this
scenario, the tautology simply prevents the system from occu-
pying any state that violates the conditions of Definition 3
before the horizons have been applied,

ϕss,1 = �((sland ∧ ¬fd )↔ (©sx,y ↔ sx,y)). (16)

Equation (16) is the modified form of (8), already in GR(1)
form, replacing the global fx,y element with the local fd vari-
able. Equations (17), (18), and (19) are the modified versions
of (6), (4), and (7), respectively.

ϕss,2 = �((w = 0% ∧ goal ∧ base)

↔©w = 100%), (17)

ϕss,3 = �((w > 0% ∧ drop ∧ goal ∧ ¬base)

↔©w = w− 33%), (18)

ϕss,4 = �((! © w = 100%∧!© w = w− 33%)

↔©w = w). (19)

In (17), the system reaching the base location has been
replaced with the local goal ∧ base proposition combination
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to enforce the notion that UAVs only fill up when reaching
base if the base was also set as the goal,

ϕsp = �♦goal. (20)

Lastly, (20) is the generalized version of (10) and (11).
Equation (20) models both since the allocation process is
responsible for ensuring the conditions that drive the UAV
to either the base location or a particular fire location, which
serve as the current goal.

Equations (15) - (20) along with the environment defini-
tions form (21), the synthesis problem about each progress
goal. This formulation in the RH framework captures
the intended behavior of the original specifications while
enabling the allocation method to dictate which goals are
prioritized in which order,

9x ′,y′
= ϕeinit ∧ ϕ

e
s ∧ ϕ

e
p

−→ ϕsinit ∧ ϕ
s
s,1 ∧ ϕ

s
s,2 ∧ ϕ

s
s,3 ∧ ϕ

s
s,4 ∧ ϕ

s
p ∧�8. (21)

To apply the RH framework, the state space must be seg-
mented into horizonsWx ′,y′

j about every possible goal region.
A formal definition for such is provided by Definition 5, and
Fig. 6 visualizes such for a single goal.

FIGURE 6. Example of RH partitions for progress statement centered on
position (4,4), i.e. W0.

Definition 5: Horizons are defined as Wx ′,y′

j = {s ∈ S |
3(j − 1) ≤ |sx − x ′| + |sy − y′| ≤ 3j where j = 1, 2, 3, . . .}.
Wx ′,y′

0 refers to goal.

These horizons are utilized to form the individual 9x ′,y′

j

specifications used in the RH framework. This formal defi-
nition is intuitive and easy to apply to this problem since it
requires a simple calculation while automating the synthesis
process. Unfortunately, these horizons do not account for
static obstacle placements which create the restrictions rep-
resented by 8, and blind application will create unrealizable
specifications. A possible case of this issue is shown in Fig. 7,
in which transitions from state (1) in W2 cannot go into W1
because of obstacles. Transitions that are allowed to ‘‘move
back’’ toW3, however, can subsequently provide a path back
toW1, as represented by the numbered arrows. To circumvent
a horizon violation as such, a horizon modification algorithm
is applied during synthesis to maintain the realizability of all
RH specifications, shown in Algorithm 1.

FIGURE 7. Example of an unrealizable state (1) in W2 for the horizon
specification 92 that does have a valid next move (2) into W3 and
subsequent path back to W1.

Algorithm 1 Wx ′,y′

j Modification During Synthesis

1: procedure Synthesis_Goal(x ′, y′) F Synthesis
controllers from all initial conditions for the x ′, y′ goal
location

2: for 0 ≤ j ≤ N do
3: for s ∈Wx ′,y′

j do
4: Synthesize controller given x ′, y′ goal and

current s
5: if Controller == None then
6: Remove s from Wx ′,y′

j

7: Add s to Wx ′,y′

j+1

1) RECEDING HORIZON MODIFICATION AND
PROOF OF SPECIFICATION VALIDITY
Theorem 1: Given a modified version of the system in Def-

inition 1 which has restricted accessible states and transitions
through the addition of static obstacles but still maintains
the reachability property described in Definition 3, and by
using the initial horizons Wx ′,y′

j described in Definition 5
applied with the horizon modification algorithm described by
Algorithm 1, the specification for each horizon surrounding
each progress goal, 9x ′,y′

j , will remain realizable, preserving
the RH framework guarantees on the overall specification.

Proof: First, we maintain that the overall specification
(Eq. (21)) is realizable for the modified system descrip-
tion given no horizons and any allowable initial condition.
Because of such, a horizon-based synthesized solution exists
that fulfills the framework and definitions provided in [1].

Given the Definition 5 description of the receding horizons
Wx ′,y′

j for any individual goal (x ′, y′), reachability (Defini-
tion 3) implies that for any state sequence π that starts and
leads from s ∈ Wx ′,y′

j to a state sf with sf ,x,y = (x ′, y′),

said sequence π must contain at least one s ∈ Wx ′,y′

k for all
0 ≤ k ≤ j. Under themodified system definition, all available
π sequences for some s ∈ Wx ′,y′

j may also need to include

s ∈ Wx ′,y′
r for some r > j, i.e. the only available path to the

goal may require the state to move into horizons away from
the goal before moving back through horizons towards the
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goal due to the presence of obstacles. The presence of such
a sequence that includes paths with s ∈ Wx ′,y′

r>j as the only
valid path immediately violates the order conditions for the
receding horizon specification 9x ′,y′

j . To address this viola-
tion, modifications to the horizons, as shown in Algorithm 1,
are made during synthesis to maintain the condition that a
path π does not contain any s ∈Wx ′,y′

r>j .
As controllers are synthesized around each goal and for

each initial condition si within each set Wx ′,y′

j , starting with
j = 0 and incrementing, realizability failures are direct results
of the lack of a system path to the horizonWx ′,y′

j−1 that remains

only in Wx ′,y′

j . This is a result of the failure to satisfy 9x ′,y′

j

since the overall specification 9x ′,y′ is realizable. Because a
path starting at the initial condition si that fulfills the global
specification must exist on the global scale and none of the
sets Wx ′,y′

j overlap per index (x ′, y′), the path must enter

into Wx ′,y′

j+1 due to the reachability property stated before.

Through the algorithm, this state si is removed from Wx ′,y′

j

and added to Wx ′,y′

j+1 . All intermediate states between the

initial condition and horizon Wx ′,y′

j+1 are also moved to the
next horizon since each state is tested as an initial condition
in Algorithm 1, and these states cannot serve as viable initial
conditions themselves. Therefore, the revisedWx ′,y′

j+1 contains

the original set Wx ′,y′

j+1 plus all states from Wx ′,y′

j that could
not serve as initial conditions to reach the next horizon of
Wx ′,y′

j−1 (or goal if j − 1 = 0). This statement serves as a
recursive assignment for each horizon j, shifting states back
horizons until a new horizon set for a goal is defined such
that each s ∈Wx ′,y′

j starts a path π contained solely inWx ′,y′

j

that reachesWx ′,y′

j−1 . Because of this,9x ′,y′

j is realizable for all
goals, all horizons, and all initial conditions, maintaining the
guarantees provided by the RH framework used from [1].
A benefit of the approach used by Algorithm 1 is that

the viability test for an initial condition is made during syn-
thesis and construction of controllers. If no controller from
the initial condition is found that satisfies the specification,
the approach automatically generates the needed modifi-
cations to the horizon template to render the specification
realizable. Doing so during execution allows for keeping
valid horizons initially provided and only changing them as
needed.

B. DYNAMIC ALLOCATION
In this paper, we propose a straightforward method for man-
aging the dynamic allocation of UAVs to fire perimeter loca-
tions that spread with time. The allocation process considers
four main attributes that directly affect a fire’s progress to
the boundary edge and a single UAV’s ability to suppress
such. These include: proximity of the UAVs to fire locations;
proximity of fires to the domain boundary; wind direction
and magnitude; and the amount of burn-through time pro-
vided by any suppressant acting on the fire. These attributes

were chosen due to their simplicity in calculation and their
ease of observation outside of the simulation environment.
We assume that the firemodel (which determines the previous
attributes and is explained further in the Simulation subsec-
tion) and its corresponding perimeter is correctly abstracted
into the cells used by the synthesis process (i.e. any cell that
contains the fire perimeter is interpreted as holding fire and
is made available for allocation).

Algorithm 2 UAV dynamic allocation process
1: procedure Assign_UAVs(UAVs,Fp) F Allocate all

UAVs to fires in the fire perimeter set Fp
2: for si,(x,y) ∈ UAVs do
3: min_cost ← inf
4: for fp ∈ Fp do
5: cost ← g(fp, si,(x,y))
6: if cost ≤ min_cost then
7: f _min← fp
8: min_cost ← cost
9: Allocate ith UAV to f _min
10: Remove f _min from Fp

Algorithm 2 shows the process for allocating UAVs to
the fire perimeter locations, performed at each update of the
synthesized controllers. The inputs consist of UAVs, the set
of all location tuples si,(x,y) for the UAVs (ordered by the
index i), and Fp, the set of all current fire perimeter location
tuples fp in the environment domain. Due to the limited
number of abstractions that our synthesized controller acts
over, calculating the cost of each individual fire relative to
each UAV is a feasible option of determining the minimized
allocation cost per UAV at each update of the synthesized
controllers. Note that no optimization of UAV assignments
is performed across members, i.e. the UAVs are assigned to
fire locations in order and the next UAV cannot be assigned
to a fire previously chosen in the main loop. [The removal
of fire elements from Fp in the algorithm do not impact the
contents Fp in the next algorithm call, however.]

The cost function g(f , x) is calculated as the weighted sum
of: the distance between the fire and the UAV; the fire’s
distance from the closest boundary edge; the alignment of
the fire’s direction alongside the wind and its magnitude; and
the amount of suppressant acting on the fire. This equation is
displayed in (22),

g(f , x) = df ∗ ‖x − f ‖ + ef ∗min(‖edge− f ‖)

−wf ∗ ‖f · wind‖+bf ∗suppressant_time_left(f ),

(22)

where df , ef , wf , and bf are all heuristic weights for each
relevant attribute. The coefficient df behaves as a penalty
weight for the distance between a UAV location x and fire
location f . The coefficient ef represents a penalty weight on
fires that are further from any location along the outer edge
of the domain. The coefficient wf is an importance weight on
fires further along the direction of the wind. A greater value
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contributes negatively to the total cost. Finally, coefficient
bf corresponds to a penalty on the remaining time for sup-
pressant already present at the fire. This increases a relative
fire’s cost proportionally to the remaining burn-through time.
Within all four terms, the variable edge represents any loca-
tion along the domain boundary, the vector wind corresponds
to a scenario’s x and y components of the wind vector, and
the function suppressant_time_left calculates the remaining
burn through time (in seconds) of suppressant at a current fire
location, returning zero if no suppressant is present.

These weights represent ‘‘knobs’’ for heuristically tuning
the allocation of UAVs to individual fires. Ideally, we aim to
have the UAVs prioritize fire perimeters that are moving fur-
ther along thewind direction and approaching the edges of the
domain foremost. The distance from fire and burn-through
time terms act to ‘‘spread out’’ the allocation of UAVs when
the wind and edge terms are less severe. Through initial test-
ing, we achieved the desired behaviors using standard units
by choosing the coefficients df , ef , wf , and bf as 0.1, 1.0,
0.1, and 0.02, respectively. For perspective, the four attribute
terms in the cost function without coefficient multiplication,
using standard units when evaluated, were typically on the
order of 100, 100, 10,000, and 1,000, respectively.

C. SIMULATION
To implement the solution and test its ability to meet the
problem scenario, the synthesized controllers and alloca-
tion algorithm were constructed in Python alongside a sim-
plified fire simulation following the wavelet differential
equations and the Rothermel spread equation provided in
FARSITE [17]. FARSITE models the fire fronts as propa-
gating wavelets, with the fire spread rate calculated by the
Rothermel spread equation serving as the main indication
of intensity. Reference [18] provides the valuation of the
Rothermel spread equation for various fuel types and cli-
mates, shown in Fig. 8. For the simulation, we assumed the
fuel type was SH7, which is shrubbery in a dry climate, and
approximated the spread rates for 3 levels of wind speed.
Table 1 provides these approximations for each wind speed.
At each update time for the fire, the calculated spread rate
of a fire vertex along the perimeter was also adjusted with a
+/−10% standard deviation to provide further variation in
the fire front growth across each simulation. Additionally,
the fire front model’s perimeter was abstracted into distinct
fire regions for use by the dynamic allocation process.

TABLE 1. Chosen wind speeds and resulting spread rates of fires for use
in simulation scenarios.

Fire suppression mechanics are a relatively unknown area
of research, and simulations typically assume that obstacles

FIGURE 8. Fire spread rates as a function of wind speed for various fuel
models, pulled directly from [18].

FIGURE 9. Initial conditions of all fire scenarios, showing locations
of 25 m diameter starting fires (red dots) and constant wind conditions
(blue arrows). Grey boxes represent static obstacles.

(both static and dropped suppressant) simply stop or greatly
slow the spread rate at that specific location on a fire front,
either indefinitely for static obstacles or a limited time for
suppressant (referred to as the burn-through time). The place-
ment of temporary obstacles in our simulation provided the
direct mechanisms in which the fire was slowed down at
any point by a UAV. [Note that we only modeled slowing
the fire down or stopping, no permanent extinguishing of
cells.] The dropping of suppressant was modeled after the
line length and burn-through times for 1500 liters of sup-
pressant, as discussed in [19]. For a 1500 liter suppressant
drop across 45 meters, the burn-through time is approxi-
mately 2 hours. We assumed that a linear relationship exists
between the amount of suppressant and the burn-through
time, i.e. 125 liters constitute about 10 minutes of burn-
through, and each fractional drop of 125 liters on an area
added the same proportional amount of 10 minutes to the
current burn-through time. Additionally, we assumed a linear
relationship between the rate of growth of a fire vertex within
a suppressant area and the burn-through time left. The end-
points on this linear relationship were 0% of normal growth
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FIGURE 10. Box plot distributions of the simulated time for fire to reach any domain edge given a set number of UAVs fighting such fires
(scenarios 1, 2, and 3).

FIGURE 11. Box plot distributions of the simulated time for fire to reach any domain edge given a set number of UAVs fighting such fires
(scenarios 4, 5, and 6).

rate for full burn-through time left and 5% of normal growth
for no burn-through time left. This relationship was included
to add conservative stress on the UAVs’ ability to suppress the
fires. Lastly, the geometry associated with suppressant drops
was ignored, i.e. any suppressant dropped on the fire front
was assumed to align itself so as to correctly block the fire
within that region.

The UAVs were modeled to follow simplified kinematics
and assumed to still maintain the transitions described in the
problem description at each time step. Additionally, the UAVs
were assumed to require 4 minutes anytime they were forced
to stop, either by a random stop signal or stopping at the base
to pick up suppressant.

Various fire scenarios’ initial conditions and parameter
settings were constructed for the purposes of testing the
controllers. These fire scenarios were aimed at testing the
capabilities of the UAVs to slow down all fires from reaching
the borders and gauge the effectiveness of different fleet num-
bers. These scenarios are provided in Fig. 9. The simulation
cycled through multiple iterations on each scenario, testing
the effectiveness of up to 4 fleet members. The average time

for the fire to reach the outer edge on each scenario and
fleet number combination was calculated. For all scenarios,
the UAVs started at the base location.

VI. RESULTS
TuLiP [20] was utilized to realize and synthesize the con-
trollers associated with each region Wx ′,y′

j . On an Intel
i5-6500 CPU @ 3.20 GHz processor, this total process,
approximately 250 regions W , took on the order of 8 hours.
In addition to the large amount of time to synthesize all of
the individual controllers, numerous memory issues came up
throughout the process, even with a system limit of 16 GB
of RAM. The total size of the synthesized controllers was
approximately 2 GB.

For each scenario tested, simulations where conducted
100 times to assess the fleet of UAVs’ ability to slow down
the spread of the fire to the domain edges, provided each
UAV experiences a 1% chance of a random stop signal
for every transition time (3 seconds in all scenarios). The
results were compiled and displayed in box plots shown
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FIGURE 12. Example of scenario 1 results for no UAVs, 2 UAVs, and
4 UAVs. Red areas represent fire, blue triangles are the UAVs, black lines
show the current UAV assignments, green squares are fire perimeter
locations in which suppressant is currently dropped, and black squares
represent the obstacles.

FIGURE 13. Example of scenario 4 results for no UAVs, 2 UAVs, and
4 UAVs.

in Fig. 10 and 11. The top and bottom of the boxes indicate
the 75th and 25th percentiles, respectively, with red plus signs
showing outliers. Median duration times of a distribution are
represented by the middle red lines in the boxes, and mean
duration times are shown as the asterisks alongside numerical
values.

Additionally, example time lapses for Scenarios 1, 4, and
6 are presented in Fig. 12, 13 and 14, showcasing how the fire
grew in response to a varying number of UAVs.

A few outcomes are observable through Fig. 10 and 11.
First, in all cases, increasing the number of UAVs generally
increased the median and average duration times of the tests,
an intuitive result. Additionally though, especially evident

FIGURE 14. Example of scenario 6 results for no UAVs, 2 UAVs, and
4 UAVs.

in the Scenario 1 side of Fig. 10, the greater the number of
UAVs used resulted in a higher spread between the minimum
and maximum test duration times. The most likely explana-
tion for this behavior is that greater differences between fire
conditions in separate simulations accumulate over longer
run-times associated with larger UAV groups, and since the
UAVs are suspect to 4 minute periods of stopping while the
standard 33% of 125 liters suppressant dropped corresponds
to 3.33 minutes of burn-through time, these differences can
greatly effect the UAVs’ ability to slow down critical fires in
time before refilling.

The greater stress scenarios in 4 and 6 (greater wind and
number of fires) provide notable results in contrast to one
another. In scenario 4, the obstacles provide additional block-
age for the UAVs, and as a result, a greater number of UAVs
provides greater performance since the number of critical fire
locations (e.g. fires further in the wind direction and closer to
the edge) are limited and easily accessible in time. This is
evident in Fig. 13 in the 285 second time of the 2 UAV case.
By only hitting the edges of the fire about to wrap around
the obstacle, the fire was greatly slowed down. On the other
hand, in scenario 6, few obstacles slowed the fires down, and
the UAVs had to ‘‘rush’’ in time to suppress the fires.Multiple
UAVs were always required for the test to have any chance of
lasting longer than the 0 UAV case, but often UAVs could not
reach the critical fires in time, evident in both the 2 UAVs and
4 UAVs cases of Fig. 14 and by the minimum duration values
in the scenario 6 side of Fig. 11.

VII. CONCLUSION AND FUTURE WORK
In this paper, we constructed a high-level planner and con-
troller to control a fleet of UAVs for various fire fighting
scenarios. Our contributions include the RH framework mod-
ification combinedwith dynamic allocation, the algorithm for
modifying the horizon definitions during synthesis, and the
implemented simulation and results. The simulation demon-
strated the method’s ability to slow down the advancement of
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fire fronts towards the domain edge, providing a starting point
of guaging the usefulness of automated UAVs in tackling
fires before crews can arrive. The ability to slow down a
starting fire by even half an hour to an hour (comparable to the
maximum slowdown amounts in Scenarios 1, 2, 4, and 5) is
a significant amount of time for ground crews to reach a
location fast enough to effectively stop such a fire in its early
phases.

Expanding upon the receding horizon framework for reac-
tive synthesis allowed us to expand the scope of this problem
while integrating the method with dynamic allocation for
assigning UAVs. Even with such an approach, numerous
issues arose throughout the process that help highlight key
difficulties moving forward when using reactive synthesis in
the control of UAVs. First, the RH framework, when consid-
ering all initial conditions, still yields an excessively large
controller (about 2 GB) after 8 hours of runtime, a signif-
icant hurdle for applying such a design when considering
arbitrary obstacle environments. Next, a simplified transition
system was utilized which limited the total orientation space
and interpreted UAV movement in only 2 dimensions, still
far more restrictive than UAV movement in reality. Lastly,
no constraints were used in considering the orientation of
UAVs when dropping suppressant, which significantly fac-
tors into how well the suppressant slows down an advancing
fire front. Each of these points combine to exemplify the
need for smarter partitioning of possible transitions a UAV
can take in 3D space (easily dependent on at least 3 full
degrees of freedom), should reactive synthesize be used for
UAV control. So while the reactive synthesis design is strong
in enforcing the design constraints formally, the scope of its
application is still limited per goal.

For improvements on this problem as it was explored,
multiple changes can be assessed. First, the size of the syn-
thesized controller could be addressed through reformatting
the outputted synthesized controller in each horizon. Cur-
rently, controllers are synthesized per initial condition in a
horizon, but synthesizing a single controller for each hori-
zon that includes all initial conditions can cut down on the
total size of the generated finite state machine and possibly
the synthesis time. Second, modifications to the synthesized
controllers can bemade to enforce desired orientations during
suppressant drops. This will intuitively add to the size of the
controllers but enable more accurate control of the UAVs
for dropping suppressant in the correct direction. Lastly,
direct coordination between synthesized controllers should
be explored to control the frequency of suppressant drops on
critical fires. The need for such is apparent by the ‘‘escaping’’
streak of fire present for all cases in Fig. 13. If the UAVs
had spread out the times they dropped suppressant on the
fire wrapping around the obstacle edge, the advancement
of such would be hindered further since the UAVs would
avoid refilling at the same time and better stretch out their
resources. This effect could be achieved through modifying
the allocation algorithm to optimize the total assignment of
UAVs through a finite time horizon, perhaps achieved by

expanding on the method presented in [12] and performing a
type of tree search across sequential UAV assignment options
and their associated costs.
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