Aerospace Engineering ENAE 464 (0201, 0202)

ABET Course Syllabus

ENAE 464 Aerospace Engineering Laboratory (sections 0201, 0202)

Credits & Contact Hours: 3 credits (2 hours of lecture and 3 hours of lab)

Course Status: Required

Schedule: Offered every Spring semester

Course Description: Application of fundamental measuring techniques to measurements in aerospace engineering. Includes experiments in aerodynamics, structures, propulsion, flight dynamics and astrodynamics. Correlation of theory with experimental results.

Pre-Requisites: ENAE 311, ENAE 324, ENAE 362 and ENAE 432

Co-Requisites: None

Textbooks: None

Other Required Material: Course lecture notes and handouts

Course Oversight: Design/Lab Committee

Syllabus Prepared By/Date: Dr. Kenneth Yu on June 21, 2011

Course Objectives/Student Learning Outcomes:
1. Perform an data error analysis
2. Perform uncertainty propagation analysis
3. Perform statistical analysis
4. Have an understanding of probability distributions
5. Understand flow property measurements
6. Possess the ability to setup, perform, and analyze an aerospace related experiment involving measurements, data, collection, technical report writing

Topics Covered:
1. Aerodynamics
 • Incompressible Flow Experiment
 • Compressible Flow Experiment
 • Viscous Flow Experiment
 • Wind Tunnel Testing
2. CFD
 • Application of Computational Fluid Dynamic
3. Flight Dynamics & Control
 • System Identification Experiment
4. Diagnostics & Measurements
 • Application of Particle Imaging Velocimetry
5. Propulsion
 • Reacting Flow Experiment
6. Space Systems
 • Ion Energy Measurements
 • Human Factors Testing
7. Other Topics Planned During Lectures and Labs
 - Error Analysis, Uncertainty Propagation
 - Statistical Analysis, Probability Distributions
 - Flow Property Measurements: pressure, temperature, and velocity
 - Flow Visualization Techniques: density variation, species concentration
 - Laser-Based Diagnostics

Relationship of Course Objectives to Program Outcomes
This course addresses program outcomes: 3, 6, 7, 9, 10